Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,85 +1,70 @@
|
|
1 |
-
# app.py
|
2 |
import streamlit as st
|
|
|
3 |
from moviepy.editor import VideoFileClip
|
4 |
import whisper
|
5 |
from transformers import pipeline
|
6 |
-
import os
|
7 |
-
|
8 |
-
# Set page title and layout
|
9 |
-
st.set_page_config(page_title="Video Summarizer", layout="wide")
|
10 |
-
|
11 |
-
# Title
|
12 |
-
st.title("Video Summarizer 🎥📝")
|
13 |
-
st.write("Upload a video, and get a transcript, summary, study notes, and answers to your questions!")
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
if uploaded_file is not None:
|
18 |
-
# Save the uploaded video to a temporary file
|
19 |
-
video_path = "uploaded_video.mp4"
|
20 |
-
with open(video_path, "wb") as f:
|
21 |
-
f.write(uploaded_file.getbuffer())
|
22 |
-
st.success("Video uploaded successfully!")
|
23 |
-
|
24 |
-
# Step 2: Extract Audio
|
25 |
-
st.header("Step 1: Extract Audio")
|
26 |
-
audio_path = "audio.wav"
|
27 |
if os.path.exists(audio_path):
|
28 |
os.remove(audio_path)
|
29 |
video = VideoFileClip(video_path)
|
30 |
video.audio.write_audiofile(audio_path)
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
with st.spinner("Transcribing audio..."):
|
38 |
-
model = whisper.load_model("base")
|
39 |
-
result = model.transcribe(audio_path)
|
40 |
-
transcript = result["text"]
|
41 |
-
st.text_area("Transcript", transcript, height=200)
|
42 |
-
st.success("Transcription complete!")
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
with st.spinner("Summarizing transcript..."):
|
48 |
-
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
|
49 |
-
max_chunk_size = 1000
|
50 |
-
chunks = [transcript[i:i + max_chunk_size] for i in range(0, len(transcript), max_chunk_size)]
|
51 |
-
summaries = []
|
52 |
-
for chunk in chunks:
|
53 |
-
summary = summarizer(chunk, max_length=130, min_length=30, do_sample=False)
|
54 |
-
summaries.append(summary[0]["summary_text"])
|
55 |
-
video_summary = " ".join(summaries)
|
56 |
-
st.text_area("Summary", video_summary, height=200)
|
57 |
-
st.success("Summarization complete!")
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
with st.spinner("Generating study notes..."):
|
63 |
-
generator = pipeline("text-generation", model="gpt2")
|
64 |
-
prompt = f"Create study notes from the following summary:\n{video_summary}"
|
65 |
-
study_notes = generator(
|
66 |
-
prompt,
|
67 |
-
max_length=400,
|
68 |
-
max_new_tokens=200,
|
69 |
-
num_return_sequences=1,
|
70 |
-
truncation=True
|
71 |
-
)
|
72 |
-
st.text_area("Study Notes", study_notes[0]["generated_text"], height=200)
|
73 |
-
st.success("Study notes generated!")
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
with st.spinner("Finding answer..."):
|
80 |
-
qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
81 |
-
answer = qa_pipeline(question=question, context=video_summary)
|
82 |
-
st.text_area("Answer", answer["answer"], height=100)
|
83 |
-
st.success("Answer found!")
|
84 |
-
else:
|
85 |
-
st.warning("Please upload a video file to get started.")
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import os
|
3 |
from moviepy.editor import VideoFileClip
|
4 |
import whisper
|
5 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# Function to extract audio from video
|
8 |
+
def extract_audio(video_path, audio_path="audio.wav"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
if os.path.exists(audio_path):
|
10 |
os.remove(audio_path)
|
11 |
video = VideoFileClip(video_path)
|
12 |
video.audio.write_audiofile(audio_path)
|
13 |
+
return audio_path
|
14 |
+
|
15 |
+
# Function to transcribe audio using Whisper
|
16 |
+
def transcribe_audio(audio_path):
|
17 |
+
model = whisper.load_model("base")
|
18 |
+
result = model.transcribe(audio_path)
|
19 |
+
return result["text"]
|
20 |
+
|
21 |
+
# Function to summarize text
|
22 |
+
def summarize_text(text):
|
23 |
+
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
|
24 |
+
max_chunk_size = 1000
|
25 |
+
chunks = [text[i:i + max_chunk_size] for i in range(0, len(text), max_chunk_size)]
|
26 |
+
summaries = [summarizer(chunk, max_length=130, min_length=30, do_sample=False)[0]["summary_text"] for chunk in chunks]
|
27 |
+
return " ".join(summaries)
|
28 |
+
|
29 |
+
# Function to generate study notes
|
30 |
+
def generate_study_notes(summary):
|
31 |
+
generator = pipeline("text-generation", model="gpt2")
|
32 |
+
prompt = f"Create study notes from the following summary:\n{summary}"
|
33 |
+
study_notes = generator(prompt, max_length=400, max_new_tokens=200, num_return_sequences=1, truncation=True)
|
34 |
+
return study_notes[0]["generated_text"]
|
35 |
+
|
36 |
+
# Function to answer questions
|
37 |
+
def answer_question(question, context):
|
38 |
+
qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
39 |
+
result = qa_pipeline(question=question, context=context)
|
40 |
+
return result["answer"]
|
41 |
+
|
42 |
+
# Streamlit App
|
43 |
+
st.title("Lecture Video Processor")
|
44 |
+
|
45 |
+
uploaded_file = st.file_uploader("Upload a video file", type=["mp4", "mov", "avi", "mkv"])
|
46 |
+
|
47 |
+
if uploaded_file:
|
48 |
+
video_path = uploaded_file.name
|
49 |
+
with open(video_path, "wb") as f:
|
50 |
+
f.write(uploaded_file.read())
|
51 |
+
|
52 |
+
st.info("Extracting audio...")
|
53 |
+
audio_path = extract_audio(video_path)
|
54 |
|
55 |
+
st.info("Transcribing audio...")
|
56 |
+
transcript = transcribe_audio(audio_path)
|
57 |
+
st.text_area("Transcript", transcript, height=200)
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
st.info("Summarizing transcript...")
|
60 |
+
video_summary = summarize_text(transcript)
|
61 |
+
st.text_area("Summary", video_summary, height=150)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
st.info("Generating study notes...")
|
64 |
+
study_notes = generate_study_notes(video_summary)
|
65 |
+
st.text_area("Study Notes", study_notes, height=150)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
question = st.text_input("Ask a question about the video:")
|
68 |
+
if question:
|
69 |
+
answer = answer_question(question, video_summary)
|
70 |
+
st.write("Answer:", answer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|