Spaces:
Running
Running
Add application file
Browse files- app.py +4 -4
- figure_1_left_scaling_v5.png +0 -0
app.py
CHANGED
@@ -22,7 +22,7 @@ def compute_optimal_vocab(Nnv: float,
|
|
22 |
# else:
|
23 |
# Vopt_app1, Vopt_app2 = None, None
|
24 |
# Vopt_app3 = approach3_isoloss(Nnv, flops)
|
25 |
-
Vopt_app1, Vopt_app2, Vopt_app3=1
|
26 |
|
27 |
results = f"## The optimal vocabulary size for non-vocabulary parameters {Nnv:1e} is:\nApproach 1: {Vopt_app1}\nApproach 2: {Vopt_app2}Approach 3: {Vopt_app3}"
|
28 |
return results
|
@@ -31,8 +31,8 @@ def compute_optimal_vocab(Nnv: float,
|
|
31 |
with gr.Blocks() as demo:
|
32 |
with gr.Column():
|
33 |
gr.Markdown(
|
34 |
-
"""<img src="
|
35 |
-
This tool is used to predict the optimal vocabulary size
|
36 |
We provide 3 ways for prediction:
|
37 |
|
38 |
- Approach 1: Build the relationship between studied attributes and FLOPs: Build the relationship between the optimal data points (the points that reach the lowest loss under the same FLOPs budget) and the FLOPs.
|
@@ -48,7 +48,7 @@ with gr.Blocks() as demo:
|
|
48 |
with gr.Row():
|
49 |
Nnv = gr.Textbox(label="Non-vocabulary Parameters", value=7*10**9)
|
50 |
flops = gr.Textbox(label="FLOPs", placeholder="Optional (e.g. 7.05*10**21)")
|
51 |
-
output_text = gr.Textbox()
|
52 |
with gr.Row():
|
53 |
btn = gr.Button("Compute the optimal vocabulary size")
|
54 |
|
|
|
22 |
# else:
|
23 |
# Vopt_app1, Vopt_app2 = None, None
|
24 |
# Vopt_app3 = approach3_isoloss(Nnv, flops)
|
25 |
+
Vopt_app1, Vopt_app2, Vopt_app3=1.,2.,3.
|
26 |
|
27 |
results = f"## The optimal vocabulary size for non-vocabulary parameters {Nnv:1e} is:\nApproach 1: {Vopt_app1}\nApproach 2: {Vopt_app2}Approach 3: {Vopt_app3}"
|
28 |
return results
|
|
|
31 |
with gr.Blocks() as demo:
|
32 |
with gr.Column():
|
33 |
gr.Markdown(
|
34 |
+
"""<img src="figure_1_left_scaling_v5.png" style="float: left;" width="250" height="250"><h1>The Optimal Vocabulari Size Predictor</h1>
|
35 |
+
This tool is used to predict the optimal vocabulary size given the non-vocabulary parameters.
|
36 |
We provide 3 ways for prediction:
|
37 |
|
38 |
- Approach 1: Build the relationship between studied attributes and FLOPs: Build the relationship between the optimal data points (the points that reach the lowest loss under the same FLOPs budget) and the FLOPs.
|
|
|
48 |
with gr.Row():
|
49 |
Nnv = gr.Textbox(label="Non-vocabulary Parameters", value=7*10**9)
|
50 |
flops = gr.Textbox(label="FLOPs", placeholder="Optional (e.g. 7.05*10**21)")
|
51 |
+
output_text = gr.Textbox(label="Prediction")
|
52 |
with gr.Row():
|
53 |
btn = gr.Button("Compute the optimal vocabulary size")
|
54 |
|
figure_1_left_scaling_v5.png
ADDED
![]() |