Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,19 +6,40 @@ import torch
|
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
pipe = pipe.to(device)
|
|
|
|
|
|
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = 1024
|
20 |
|
21 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
|
|
22 |
|
23 |
if randomize_seed:
|
24 |
seed = random.randint(0, MAX_SEED)
|
@@ -64,6 +85,12 @@ with gr.Blocks(css=css) as demo:
|
|
64 |
""")
|
65 |
|
66 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
prompt = gr.Text(
|
69 |
label="Prompt",
|
@@ -139,8 +166,8 @@ with gr.Blocks(css=css) as demo:
|
|
139 |
|
140 |
run_button.click(
|
141 |
fn = infer,
|
142 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
143 |
outputs = [result]
|
144 |
)
|
145 |
|
146 |
-
demo.queue().launch()
|
|
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
+
# List of models
|
10 |
+
models = {
|
11 |
+
"sdxl-turbo": "stabilityai/sdxl-turbo",
|
12 |
+
"MistoLine": "TheMistoAI/MistoLine"
|
13 |
+
}
|
14 |
+
|
15 |
+
# Cache to store loaded pipelines
|
16 |
+
pipelines = {}
|
17 |
+
|
18 |
+
# Function to load a model
|
19 |
+
def load_model(model_name):
|
20 |
+
if model_name in pipelines:
|
21 |
+
return pipelines[model_name]
|
22 |
+
|
23 |
+
if model_name not in models:
|
24 |
+
raise ValueError(f"Model {model_name} is not available.")
|
25 |
+
|
26 |
+
model_path = models[model_name]
|
27 |
+
if torch.cuda.is_available():
|
28 |
+
torch.cuda.max_memory_allocated(device=device)
|
29 |
+
pipe = DiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
30 |
+
pipe.enable_xformers_memory_efficient_attention()
|
31 |
+
else:
|
32 |
+
pipe = DiffusionPipeline.from_pretrained(model_path, use_safetensors=True)
|
33 |
pipe = pipe.to(device)
|
34 |
+
|
35 |
+
pipelines[model_name] = pipe
|
36 |
+
return pipe
|
37 |
|
38 |
MAX_SEED = np.iinfo(np.int32).max
|
39 |
MAX_IMAGE_SIZE = 1024
|
40 |
|
41 |
+
def infer(model_name, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
42 |
+
pipe = load_model(model_name)
|
43 |
|
44 |
if randomize_seed:
|
45 |
seed = random.randint(0, MAX_SEED)
|
|
|
85 |
""")
|
86 |
|
87 |
with gr.Row():
|
88 |
+
model_name = gr.Dropdown(
|
89 |
+
label="Select Model",
|
90 |
+
choices=list(models.keys()),
|
91 |
+
value="sdxl-turbo",
|
92 |
+
show_label=True
|
93 |
+
)
|
94 |
|
95 |
prompt = gr.Text(
|
96 |
label="Prompt",
|
|
|
166 |
|
167 |
run_button.click(
|
168 |
fn = infer,
|
169 |
+
inputs = [model_name, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
170 |
outputs = [result]
|
171 |
)
|
172 |
|
173 |
+
demo.queue().launch()
|