|
import torch |
|
import os |
|
from fastapi import FastAPI, Request |
|
from pydantic import BaseModel |
|
from huggingface_hub import hf_hub_download |
|
from model import GPT, GPTConfig |
|
from fastapi.templating import Jinja2Templates |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from fastapi.responses import HTMLResponse |
|
from pathlib import Path |
|
import tempfile |
|
from transformers import AutoTokenizer |
|
import uvicorn |
|
|
|
|
|
TEMPLATES_DIR = os.path.join(os.path.dirname(__file__), "templates") |
|
|
|
MODEL_ID = "sagargurujula/smollm2-text-generator" |
|
|
|
|
|
app = FastAPI(title="SMOLLM2 Text Generator") |
|
|
|
|
|
templates = Jinja2Templates(directory=TEMPLATES_DIR) |
|
|
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
|
|
cache_dir = Path(tempfile.gettempdir()) / "model_cache" |
|
os.environ['TRANSFORMERS_CACHE'] = str(cache_dir) |
|
os.environ['HF_HOME'] = str(cache_dir) |
|
|
|
|
|
def load_model(): |
|
try: |
|
|
|
model_path = hf_hub_download( |
|
repo_id=MODEL_ID, |
|
filename="best_model.pth", |
|
cache_dir=cache_dir, |
|
token=os.environ.get('HF_TOKEN') |
|
) |
|
|
|
|
|
model = GPT(GPTConfig()) |
|
|
|
|
|
checkpoint = torch.load(model_path, map_location=device, weights_only=True) |
|
model.load_state_dict(checkpoint['model_state_dict']) |
|
|
|
model.to(device) |
|
model.eval() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path ="HuggingFaceTB/cosmo2-tokenizer", cache_dir=cache_dir) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
return model, tokenizer |
|
|
|
except Exception as e: |
|
print(f"Error loading model: {e}") |
|
raise |
|
|
|
|
|
model, tokenizer = load_model() |
|
|
|
|
|
class TextInput(BaseModel): |
|
text: str |
|
|
|
@app.post("/generate/") |
|
async def generate_text(input: TextInput): |
|
|
|
input_ids = tokenizer(input.text, return_tensors='pt').input_ids.to(device) |
|
|
|
|
|
generated_tokens = [] |
|
num_tokens_to_generate = 50 |
|
|
|
with torch.no_grad(): |
|
generated_tokens = model.generate(input_ids, max_length=50, eos_token_id = tokenizer.eos_token_id) |
|
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True) |
|
|
|
|
|
return { |
|
"input_text": input.text, |
|
"generated_text": generated_text |
|
} |
|
|
|
|
|
@app.get("/", response_class=HTMLResponse) |
|
async def home(request: Request): |
|
return templates.TemplateResponse( |
|
"index.html", |
|
{"request": request, "title": "GPT Text Generator"} |
|
) |
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="127.0.0.1", port=8080) |
|
|
|
|