File size: 16,285 Bytes
2799123 0e19c73 2799123 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
# Solving for residual std scaling issue
import os
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
from torchtune.modules import RotaryPositionalEmbeddings
import logging
from transformers import AutoTokenizer
from datasets import load_dataset
from torch.utils.checkpoint import checkpoint
from torch.utils.data import DataLoader
class LlamaMLP(nn.Module):
def __init__(self, config):
super().__init__()
hidden_dim = 1536 # Expand dimension to 1536
self.gate_proj = nn.Linear(config.n_embd, hidden_dim, bias=False)
self.up_proj = nn.Linear(config.n_embd, hidden_dim, bias=False)
self.down_proj = nn.Linear(hidden_dim, config.n_embd, bias=False)
self.act_fn = nn.SiLU() # Activation function
self.down_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
gate = self.gate_proj(x) # Gate projection
up = self.up_proj(x) # Up projection
return self.down_proj(self.act_fn(gate) * up) # Apply activation and down-project
class LlamaDecoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.self_attn = CausalSelfAttention(config) # Self-attention block
self.input_layernorm = nn.RMSNorm(config.n_embd, eps=1e-5) # RMSNorm for inputs
self.post_attention_layernorm = nn.RMSNorm(config.n_embd, eps=1e-5) # RMSNorm post-attention
self.mlp = LlamaMLP(config) # Llama-style MLP
def forward(self, x, attention_mask):
# Use checkpointing for memory-intensive layers
return checkpoint(self._forward_impl, x, attention_mask, use_reentrant=False)
# return checkpoint.checkpoint(self._forward_impl, x, attention_mask, use_reentrant=False)
def _forward_impl(self, x, attention_mask):
# Apply self-attention with normalization
residual = x
x = self.input_layernorm(x)
x = self.self_attn(x, attention_mask) + residual
# Apply MLP with post-attention normalization
residual = x
x = self.post_attention_layernorm(x)
x = self.mlp(x) + residual
return x
@dataclass
class GPTConfig:
block_size: int = 2048 # max sequence length
vocab_size: int = 49152 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
n_layer: int = 30 # number of layers
n_head: int = 9 # number of heads
n_embd: int = 576 # embedding dimension
num_key_value_heads: int = 3
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
assert config.n_embd % config.num_key_value_heads == 0
# Query projection for all heads
self.cq_attn = nn.Linear(config.n_embd, config.n_embd, bias=False) # For queries
# Key-Value projection for grouped heads
self.ckv_attn = nn.Linear(config.n_embd, 2 * (config.n_embd // config.num_key_value_heads), bias=False) # For keys and values
# Output projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=False)
self.n_head = config.n_head
self.num_key_value_heads = config.num_key_value_heads
self.head_dim = config.n_embd // config.n_head
# Rotary Positional Embedding
self.rope = RotaryPositionalEmbeddings(dim=self.head_dim, max_seq_len=config.block_size)
# Bias for causal mask
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
.view(1, 1, config.block_size, config.block_size))
def forward(self, x, attention_mask=None):
B, T, C = x.size() # Batch size, sequence length, embedding dimension (n_embd)
# Compute queries
q = self.cq_attn(x) # (B, T, C)
q = q.view(B, T, self.n_head, self.head_dim).transpose(1, 2) # (B, nh, T, hs)
# Compute keys and values (shared across grouped heads)
kv = self.ckv_attn(x) # (B, T, 2 * (C / num_key_value_heads))
kv_dim = C // self.num_key_value_heads
k, v = kv.split(kv_dim, dim=2) # Split into keys and values
k = k.view(B, T, self.num_key_value_heads, kv_dim // self.num_key_value_heads).transpose(1, 2) # (B, kvh, T, hs)
v = v.view(B, T, self.num_key_value_heads, kv_dim // self.num_key_value_heads).transpose(1, 2) # (B, kvh, T, hs)
k = torch.repeat_interleave(k, repeats=self.n_head // self.num_key_value_heads, dim=1)
v = torch.repeat_interleave(v, repeats=self.n_head // self.num_key_value_heads, dim=1)
# Apply RoPE to queries and keys
q = self.rope(q)
k = self.rope(k)
# Handle attention mask
if attention_mask is not None:
# Expand attention_mask to (B, 1, 1, T)
attention_mask = attention_mask[:, None, None, :].to(dtype=torch.bool)
# Create causal mask (lower triangular) and convert to bool
causal_mask = torch.tril(torch.ones(T, T, device=x.device, dtype=torch.bool)).view(1, 1, T, T)
# Combine causal mask and padding mask
attention_mask = causal_mask & attention_mask # β
Now both are torch.bool
#print(f"q.shape: {q.shape}, k.shape: {k.shape}, v.shape: {v.shape}, attention_mask.shape: {attention_mask.shape}")
# Replace with Flash Attention (memory efficient)
y = F.scaled_dot_product_attention(
q, k, v,
attn_mask=attention_mask, # Combines padding mask
#is_causal=True, # Auto-applies causal mask
dropout_p=0.0
)
# Reshape and combine heads
y = y.transpose(1, 2).contiguous().view(B, T, C) # (B, T, C)
# Output projection
y = self.c_proj(y)
return y
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# Embeddings
self.token_embedding = nn.Embedding(config.vocab_size, config.n_embd)
# Transformer layers
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.n_layer)])
self.final_norm = nn.RMSNorm(config.n_embd, eps=1e-5)
# Output head
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# Share weights between input embedding and output head
self.token_embedding.weight = self.lm_head.weight
# Initialize weights
self.apply(self._init_weights)
def _init_weights(self, module):
std = 0.041666666666666664
if isinstance(module, nn.Linear):
if hasattr(module, 'NANGPT_SCALE_INIT'):
std *= (2 * self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std = std)
def forward(self, idx, attention_mask=None):
B, T = idx.size()
assert T <= self.config.block_size, f"Sequence length {T} exceeds block size {self.config.block_size}"
# Token and positional embeddings
token_embeddings = self.token_embedding(idx)
# Combine embeddings
x = token_embeddings
# Pass through transformer layers
for layer in self.layers:
x = layer(x, attention_mask)
# Final layer normalization
x = self.final_norm(x)
# Compute logits
logits = self.lm_head(x)
return logits
def generate(self, input_ids, max_length=50,eos_token_id=None):
generated_tokens = []
current_ids = input_ids
# π₯ Infer device from input_ids
device = input_ids.device
for _ in range(max_length):
# Forward pass to get logits
logits = self.forward(current_ids) # Shape: (batch_size, seq_len, vocab_size)
# π₯ Only take the last token's logits
logits = logits[:, -1, :] # Shape: (batch_size, vocab_size)
next_token =logits.argmax(dim=-1).cpu().item()
# Store token (avoid GPU-CPU issues)
generated_tokens.append(next_token)
# Append token to input
current_ids = torch.cat([current_ids, torch.tensor([[next_token]]).to(device)], dim=1)
# Stop if EOS token is generated
if eos_token_id is not None and next_token == eos_token_id:
break
return generated_tokens
# Configuration Class
class OptimizerConfig:
accumulate_grad_in_fp32 = True
clip_grad = 1.0
learning_rate = 0.003
lr_decay_starting_step = 1600000
lr_decay_steps = 400000
lr_decay_style = "linear"
lr_warmup_steps = 2000
lr_warmup_style = "linear"
min_decay_lr = 0.0
adam_beta1 = 0.9
adam_beta2 = 0.95
adam_eps = 1.0e-08
weight_decay = 0.01
zero_stage = 0
name = "adamW"
torch_adam_is_fused = True
if __name__ == "__main__":
logging.basicConfig(filename='/kaggle/working/training_log.txt', level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s', force=True)
# Device setup
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
device = "mps"
print(f"Using device: {device}")
torch.set_float32_matmul_precision('high')
# Seed setup
torch.manual_seed(1337)
if torch.cuda.is_available():
torch.cuda.manual_seed(1337)
# Model initialization
model = GPT(GPTConfig())
model.to(device)
#model = torch.compile(model)
# Load checkpoint if exists
best_model_path = '/kaggle/working/best_model.pth'
checkpoint_model_path = '/kaggle/working/checkpoint_model.pth'
start_epoch = 0
start_step = 0
best_loss = float('inf')
if os.path.exists(checkpoint_model_path):
model_checkpoint = torch.load(checkpoint_model_path, map_location=device, weights_only=True)
model.load_state_dict(model_checkpoint['model_state_dict'])
start_epoch = model_checkpoint['epoch']
start_step = model_checkpoint['step']+1
best_loss = model_checkpoint['loss']
logging.info(f"Resuming from epoch {start_epoch}, step {start_step}, best loss {best_loss:.6f}")
# Model parameter count
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
logging.info(f"Total Parameters: {total_params:,}")
logging.info(f"Trainable Parameters: {trainable_params:,}")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")
tokenizer.pad_token = tokenizer.eos_token
# Load streaming dataset
dataset = load_dataset(
"HuggingFaceTB/smollm-corpus",
"cosmopedia-v2",
streaming=True
)['train'] # Access only the "train" split
# Define the encode function
def encode(examples):
# Tokenize the text
return tokenizer(examples['text'], truncation=True, padding='max_length', max_length=2048,return_tensors=None)
# Stream mapping
dataset = dataset.map(encode, batched=True,remove_columns=dataset.column_names)
def collate_fn(batch):
input_ids = torch.tensor([example['input_ids'] for example in batch], dtype=torch.long)
attention_mask = torch.tensor([example['attention_mask'] for example in batch], dtype=torch.long)
return {"input_ids": input_ids, "attention_mask": attention_mask}
from torch.utils.data import DataLoader, IterableDataset
train_loader = DataLoader(dataset, batch_size=8, collate_fn=collate_fn)
# Optimizer setup
optimizer_config = OptimizerConfig()
optimizer = torch.optim.AdamW(
model.parameters(),
betas=(optimizer_config.adam_beta1, optimizer_config.adam_beta2),
eps=optimizer_config.adam_eps,
weight_decay=optimizer_config.weight_decay
)
# Training loop
target_loss = 0.099999
max_iterations = 6000
optimizer.zero_grad()
scaler = torch.GradScaler() # β
Use AMP GradScaler
autocast_device = "cuda" if "cuda" in device else "cpu" # β
Ensure valid autocast device
if os.path.exists(checkpoint_model_path):
optimizer.load_state_dict(model_checkpoint['optimizer_state_dict'])
scaler.load_state_dict(model_checkpoint['scaler_state_dict'])
sample_text = "Once upon a time" # Text for tracking improvements
sample_tokens = tokenizer(sample_text, return_tensors='pt').input_ids.to(device)
#sample_tokens = torch.tensor(sample_tokens).unsqueeze(0) # Add batch dimension
for epoch in range(start_epoch, 100):
for i, batch in enumerate(train_loader, start=start_step):
x = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
# PROPER TARGET SETUP
y = torch.cat([x.clone()[:, 1:], torch.full((x.size(0), 1), tokenizer.eos_token_id, device=device)], dim=1)
with torch.autocast(device_type=device, dtype=torch.bfloat16):
logits = model(x, attention_mask=attention_mask)
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)),
y.view(-1),
ignore_index=tokenizer.eos_token_id # Exclude padding
)
scaler.scale(loss).backward() # β
Apply scaled gradient
# Gradient accumulation (effective batch size = 4)
if (i+1) % 16 == 0: # β
Ensure last batch updates
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
# Save best model
if loss.item() < best_loss:
best_loss = loss.item()
torch.save({
'epoch': epoch,
'step': i,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scaler_state_dict': scaler.state_dict(),
'loss': best_loss,
}, best_model_path)
logging.info(f"Epoch {epoch}, Step {i}, Loss: {loss.item():.6f}, Best Loss: {best_loss:.6f}")
# Perform prediction every 500 steps
if (i + 1) % 500 == 0:
model.eval()
with torch.no_grad():
generated_tokens = model.generate(sample_tokens, max_length=50,eos_token_id = tokenizer.eos_token_id)
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
logging.info(f"Step {i + 1} Prompt: {sample_text} \n Generated Token: {generated_tokens} \n Prediction: {generated_text}")
model.train()
if loss.item() <= target_loss:
logging.info(f"Target loss reached at step {i}. Training completed!")
break
if i >= max_iterations:
torch.save({
'epoch': epoch,
'step': i,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scaler_state_dict': scaler.state_dict(),
'loss': best_loss,
}, checkpoint_model_path)
logging.info("Max iterations reached. Training stopped.")
break
else:
continue
break
logging.info("Training completed!")
logging.info(f"Final Loss: {loss.item():.6f}")
logging.info(f"Best Loss Achieved: {best_loss:.6f}")
logging.info(f"Best Model Saved To: {best_model_path}")
logging.info(f"Checpoint Model Saved To: {checkpoint_model_path}") |