Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ from transformers import pipeline, WhisperProcessor, WhisperForConditionalGenera
|
|
4 |
from gtts import gTTS
|
5 |
import gradio as gr
|
6 |
import spaces
|
|
|
7 |
|
8 |
print("Using GPU for operations when available")
|
9 |
|
@@ -51,15 +52,29 @@ def process_audio_input(audio, whisper_processor, whisper_model):
|
|
51 |
|
52 |
# Generate response within a GPU-decorated function
|
53 |
@spaces.GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def text_to_speech(text, lang='hi'):
|
55 |
try:
|
56 |
# Use a better TTS engine for Indic languages
|
57 |
if lang in ['hi', 'bn', 'gu', 'kn', 'ml', 'mr', 'or', 'pa', 'ta', 'te']:
|
58 |
-
# You might want to use a different TTS library here
|
59 |
-
# For example, you could use the Google Cloud Text-to-Speech API
|
60 |
-
# or a specialized Indic language TTS library
|
61 |
-
|
62 |
-
# This is a placeholder for a better Indic TTS solution
|
63 |
tts = gTTS(text=text, lang=lang, tld='co.in') # Use Indian TLD
|
64 |
else:
|
65 |
tts = gTTS(text=text, lang=lang)
|
@@ -70,7 +85,7 @@ def text_to_speech(text, lang='hi'):
|
|
70 |
print(f"Error in text-to-speech: {str(e)}")
|
71 |
return None
|
72 |
|
73 |
-
#
|
74 |
def detect_language(text):
|
75 |
lang_codes = {
|
76 |
'bn': 'Bengali', 'gu': 'Gujarati', 'hi': 'Hindi', 'kn': 'Kannada',
|
@@ -87,17 +102,6 @@ def detect_language(text):
|
|
87 |
if any(ord(char) >= 0x0900 and ord(char) <= 0x097F for char in text): # Devanagari script
|
88 |
return 'hi'
|
89 |
return 'en' # Default to English if no Indic script is detected
|
90 |
-
@spaces.GPU
|
91 |
-
def generate_response(transcription, sarvam_pipe):
|
92 |
-
if sarvam_pipe is None:
|
93 |
-
return "Error: Text generation model is not available."
|
94 |
-
|
95 |
-
try:
|
96 |
-
# Generate response using the sarvam-2b model
|
97 |
-
response = sarvam_pipe(transcription, max_length=100, num_return_sequences=1)[0]['generated_text']
|
98 |
-
return response
|
99 |
-
except Exception as e:
|
100 |
-
return f"Error generating response: {str(e)}"
|
101 |
|
102 |
@spaces.GPU
|
103 |
def indic_language_assistant(input_type, audio_input, text_input):
|
@@ -121,13 +125,111 @@ def indic_language_assistant(input_type, audio_input, text_input):
|
|
121 |
except Exception as e:
|
122 |
error_message = f"An error occurred: {str(e)}"
|
123 |
return error_message, error_message, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
# Create Gradio interface
|
125 |
iface = gr.Interface(
|
126 |
fn=indic_language_assistant,
|
127 |
inputs=[
|
128 |
gr.Radio(["audio", "text"], label="Input Type", value="audio"),
|
129 |
gr.Audio(type="filepath", label="Speak (if audio input selected)"),
|
130 |
-
gr.Textbox(label="Type your message (if text input selected)")
|
131 |
],
|
132 |
outputs=[
|
133 |
gr.Textbox(label="Transcription/Input"),
|
@@ -135,7 +237,10 @@ iface = gr.Interface(
|
|
135 |
gr.Audio(label="Audio Response")
|
136 |
],
|
137 |
title="Indic Language Virtual Assistant",
|
138 |
-
description="Speak or type in any supported Indic language or English. The assistant will respond in text and audio."
|
|
|
|
|
|
|
139 |
)
|
140 |
|
141 |
# Launch the app
|
|
|
4 |
from gtts import gTTS
|
5 |
import gradio as gr
|
6 |
import spaces
|
7 |
+
from langdetect import detect
|
8 |
|
9 |
print("Using GPU for operations when available")
|
10 |
|
|
|
52 |
|
53 |
# Generate response within a GPU-decorated function
|
54 |
@spaces.GPU
|
55 |
+
def generate_response(transcription, sarvam_pipe):
|
56 |
+
if sarvam_pipe is None:
|
57 |
+
return "Error: Text generation model is not available."
|
58 |
+
|
59 |
+
try:
|
60 |
+
# Prepare the prompt
|
61 |
+
prompt = f"Human: {transcription}\n\nAssistant:"
|
62 |
+
|
63 |
+
# Generate response using the sarvam-2b model
|
64 |
+
response = sarvam_pipe(prompt, max_length=200, num_return_sequences=1, do_sample=True, temperature=0.7)[0]['generated_text']
|
65 |
+
|
66 |
+
# Extract the assistant's response
|
67 |
+
assistant_response = response.split("Assistant:")[-1].strip()
|
68 |
+
|
69 |
+
return assistant_response
|
70 |
+
except Exception as e:
|
71 |
+
return f"Error generating response: {str(e)}"
|
72 |
+
|
73 |
+
# Text-to-speech function
|
74 |
def text_to_speech(text, lang='hi'):
|
75 |
try:
|
76 |
# Use a better TTS engine for Indic languages
|
77 |
if lang in ['hi', 'bn', 'gu', 'kn', 'ml', 'mr', 'or', 'pa', 'ta', 'te']:
|
|
|
|
|
|
|
|
|
|
|
78 |
tts = gTTS(text=text, lang=lang, tld='co.in') # Use Indian TLD
|
79 |
else:
|
80 |
tts = gTTS(text=text, lang=lang)
|
|
|
85 |
print(f"Error in text-to-speech: {str(e)}")
|
86 |
return None
|
87 |
|
88 |
+
# Language detection function
|
89 |
def detect_language(text):
|
90 |
lang_codes = {
|
91 |
'bn': 'Bengali', 'gu': 'Gujarati', 'hi': 'Hindi', 'kn': 'Kannada',
|
|
|
102 |
if any(ord(char) >= 0x0900 and ord(char) <= 0x097F for char in text): # Devanagari script
|
103 |
return 'hi'
|
104 |
return 'en' # Default to English if no Indic script is detected
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
@spaces.GPU
|
107 |
def indic_language_assistant(input_type, audio_input, text_input):
|
|
|
125 |
except Exception as e:
|
126 |
error_message = f"An error occurred: {str(e)}"
|
127 |
return error_message, error_message, None
|
128 |
+
|
129 |
+
# Custom CSS
|
130 |
+
custom_css = """
|
131 |
+
body {
|
132 |
+
background-color: #1a1a1a;
|
133 |
+
color: #ffffff;
|
134 |
+
font-family: Arial, sans-serif;
|
135 |
+
}
|
136 |
+
|
137 |
+
.container {
|
138 |
+
max-width: 800px;
|
139 |
+
margin: 0 auto;
|
140 |
+
padding: 20px;
|
141 |
+
}
|
142 |
+
|
143 |
+
h1 {
|
144 |
+
font-size: 2.5em;
|
145 |
+
background: linear-gradient(45deg, #4a90e2, #f48fb1);
|
146 |
+
-webkit-background-clip: text;
|
147 |
+
-webkit-text-fill-color: transparent;
|
148 |
+
margin-bottom: 10px;
|
149 |
+
}
|
150 |
+
|
151 |
+
h2 {
|
152 |
+
color: #a0a0a0;
|
153 |
+
font-weight: normal;
|
154 |
+
}
|
155 |
+
|
156 |
+
.task-container {
|
157 |
+
display: flex;
|
158 |
+
justify-content: space-between;
|
159 |
+
flex-wrap: wrap;
|
160 |
+
margin-top: 30px;
|
161 |
+
}
|
162 |
+
|
163 |
+
.task-card {
|
164 |
+
background-color: #2a2a2a;
|
165 |
+
border-radius: 10px;
|
166 |
+
padding: 15px;
|
167 |
+
margin: 10px 0;
|
168 |
+
width: calc(50% - 10px);
|
169 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
170 |
+
transition: transform 0.3s ease;
|
171 |
+
}
|
172 |
+
|
173 |
+
.task-card:hover {
|
174 |
+
transform: translateY(-5px);
|
175 |
+
}
|
176 |
+
|
177 |
+
.task-icon {
|
178 |
+
font-size: 24px;
|
179 |
+
margin-bottom: 10px;
|
180 |
+
}
|
181 |
+
|
182 |
+
.input-box {
|
183 |
+
width: 100%;
|
184 |
+
padding: 10px;
|
185 |
+
border-radius: 20px;
|
186 |
+
border: none;
|
187 |
+
background-color: #333;
|
188 |
+
color: #fff;
|
189 |
+
margin-top: 20px;
|
190 |
+
}
|
191 |
+
|
192 |
+
.submit-btn {
|
193 |
+
background-color: #4a90e2;
|
194 |
+
color: white;
|
195 |
+
border: none;
|
196 |
+
padding: 10px 20px;
|
197 |
+
border-radius: 20px;
|
198 |
+
cursor: pointer;
|
199 |
+
margin-top: 10px;
|
200 |
+
transition: background-color 0.3s ease;
|
201 |
+
}
|
202 |
+
|
203 |
+
.submit-btn:hover {
|
204 |
+
background-color: #3a7bd5;
|
205 |
+
}
|
206 |
+
"""
|
207 |
+
|
208 |
+
# Custom HTML
|
209 |
+
custom_html = """
|
210 |
+
<div class="container">
|
211 |
+
<h1>Hello, User</h1>
|
212 |
+
<h2>How can I help you today?</h2>
|
213 |
+
<div class="task-container">
|
214 |
+
<div class="task-card">
|
215 |
+
<div class="task-icon">🎤</div>
|
216 |
+
<p>Speak in any Indic language</p>
|
217 |
+
</div>
|
218 |
+
<div class="task-card">
|
219 |
+
<div class="task-icon">⌨️</div>
|
220 |
+
<p>Type in any Indic language</p>
|
221 |
+
</div>
|
222 |
+
</div>
|
223 |
+
</div>
|
224 |
+
"""
|
225 |
+
|
226 |
# Create Gradio interface
|
227 |
iface = gr.Interface(
|
228 |
fn=indic_language_assistant,
|
229 |
inputs=[
|
230 |
gr.Radio(["audio", "text"], label="Input Type", value="audio"),
|
231 |
gr.Audio(type="filepath", label="Speak (if audio input selected)"),
|
232 |
+
gr.Textbox(label="Type your message (if text input selected)", elem_classes="input-box")
|
233 |
],
|
234 |
outputs=[
|
235 |
gr.Textbox(label="Transcription/Input"),
|
|
|
237 |
gr.Audio(label="Audio Response")
|
238 |
],
|
239 |
title="Indic Language Virtual Assistant",
|
240 |
+
description="Speak or type in any supported Indic language or English. The assistant will respond in text and audio.",
|
241 |
+
css=custom_css,
|
242 |
+
elem_id="indic-assistant",
|
243 |
+
theme="dark"
|
244 |
)
|
245 |
|
246 |
# Launch the app
|