Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,14 @@ processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
|
9 |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
10 |
|
11 |
def segment_everything(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
inputs = processor(text=["object"], images=[image], padding="max_length", return_tensors="pt")
|
13 |
with torch.no_grad():
|
14 |
outputs = model(**inputs)
|
@@ -17,9 +25,17 @@ def segment_everything(image):
|
|
17 |
return Image.fromarray(segmentation)
|
18 |
|
19 |
def segment_box(image, x1, y1, x2, y2):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
21 |
cropped_image = image[y1:y2, x1:x2]
|
22 |
-
inputs = processor(text=["object"], images=[cropped_image], padding="max_length", return_tensors="pt")
|
23 |
with torch.no_grad():
|
24 |
outputs = model(**inputs)
|
25 |
preds = outputs.logits.squeeze().sigmoid()
|
@@ -31,9 +47,13 @@ def update_image(image, segmentation):
|
|
31 |
if segmentation is None:
|
32 |
return image
|
33 |
|
|
|
|
|
|
|
|
|
34 |
# Ensure image is in the correct format (PIL Image)
|
35 |
if isinstance(image, np.ndarray):
|
36 |
-
image_pil = Image.fromarray(
|
37 |
else:
|
38 |
image_pil = image
|
39 |
|
|
|
9 |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
10 |
|
11 |
def segment_everything(image):
|
12 |
+
# Check if image is a list and extract the actual image data
|
13 |
+
if isinstance(image, list):
|
14 |
+
image = image[0]
|
15 |
+
|
16 |
+
# Convert numpy array to PIL Image
|
17 |
+
if isinstance(image, np.ndarray):
|
18 |
+
image = Image.fromarray(image)
|
19 |
+
|
20 |
inputs = processor(text=["object"], images=[image], padding="max_length", return_tensors="pt")
|
21 |
with torch.no_grad():
|
22 |
outputs = model(**inputs)
|
|
|
25 |
return Image.fromarray(segmentation)
|
26 |
|
27 |
def segment_box(image, x1, y1, x2, y2):
|
28 |
+
# Check if image is a list and extract the actual image data
|
29 |
+
if isinstance(image, list):
|
30 |
+
image = image[0]
|
31 |
+
|
32 |
+
# Convert PIL Image to numpy array if necessary
|
33 |
+
if isinstance(image, Image.Image):
|
34 |
+
image = np.array(image)
|
35 |
+
|
36 |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
37 |
cropped_image = image[y1:y2, x1:x2]
|
38 |
+
inputs = processor(text=["object"], images=[Image.fromarray(cropped_image)], padding="max_length", return_tensors="pt")
|
39 |
with torch.no_grad():
|
40 |
outputs = model(**inputs)
|
41 |
preds = outputs.logits.squeeze().sigmoid()
|
|
|
47 |
if segmentation is None:
|
48 |
return image
|
49 |
|
50 |
+
# Check if image is a list and extract the actual image data
|
51 |
+
if isinstance(image, list):
|
52 |
+
image = image[0]
|
53 |
+
|
54 |
# Ensure image is in the correct format (PIL Image)
|
55 |
if isinstance(image, np.ndarray):
|
56 |
+
image_pil = Image.fromarray(image)
|
57 |
else:
|
58 |
image_pil = image
|
59 |
|