Spaces:
Sleeping
Sleeping
File size: 3,727 Bytes
dfdcd97 a3ee867 e9cd6fd 3cd1243 c95f3e0 e0d4d2f c95f3e0 3cd1243 e0d4d2f 564688d 3cd1243 73989e5 3cd1243 73989e5 3cd1243 73989e5 3cd1243 73989e5 3cd1243 73989e5 3cd1243 73989e5 3cd1243 3ba1061 73989e5 e0d4d2f e9cd6fd e0d4d2f e9cd6fd 3ba1061 3cd1243 e9cd6fd 3ba1061 3cd1243 e0d4d2f e9cd6fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import gradio as gr
import torch
import cv2
import numpy as np
from transformers import SamModel, SamProcessor, BlipProcessor, BlipForConditionalGeneration
from PIL import Image
# Set up device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load SAM model and processor
sam_model = SamModel.from_pretrained("facebook/sam-vit-base").to(device)
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
# Load BLIP model and processor for image-to-text
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device)
def process_mask(mask, target_size):
if mask.ndim > 2:
mask = mask.squeeze()
if mask.ndim > 2:
mask = mask[0]
mask = (mask > 0.5).astype(np.uint8) * 255
mask_image = Image.fromarray(mask)
mask_image = mask_image.resize(target_size, Image.NEAREST)
return np.array(mask_image) > 0
def segment_image(input_image, object_name):
try:
if input_image is None:
return None, "Please upload an image before submitting."
input_image = Image.fromarray(input_image).convert("RGB")
original_size = input_image.size
if not original_size or 0 in original_size:
return None, "Invalid image size. Please upload a different image."
# Generate image caption
blip_inputs = blip_processor(input_image, return_tensors="pt").to(device)
caption = blip_model.generate(**blip_inputs)
caption_text = blip_processor.decode(caption[0], skip_special_tokens=True)
# Process the image with SAM
sam_inputs = sam_processor(input_image, return_tensors="pt").to(device)
# Generate masks
with torch.no_grad():
sam_outputs = sam_model(**sam_inputs)
# Post-process masks
masks = sam_processor.image_processor.post_process_masks(
sam_outputs.pred_masks.cpu(),
sam_inputs["original_sizes"].cpu(),
sam_inputs["reshaped_input_sizes"].cpu()
)
# Find the mask that best matches the specified object
best_mask = None
best_score = -1
for mask in masks[0]:
mask_binary = mask.numpy() > 0.5
mask_area = mask_binary.sum()
if object_name.lower() in caption_text.lower() and mask_area > best_score:
best_mask = mask_binary
best_score = mask_area
if best_mask is None:
return input_image, f"Could not find '{object_name}' in the image."
combined_mask = process_mask(best_mask, original_size)
# Overlay the mask on the original image
result_image = np.array(input_image)
mask_rgb = np.zeros_like(result_image)
mask_rgb[combined_mask] = [255, 0, 0] # Red color for the mask
result_image = cv2.addWeighted(result_image, 1, mask_rgb, 0.5, 0)
return result_image, f"Segmented '{object_name}' in the image."
except Exception as e:
return None, f"An error occurred: {str(e)}"
# Create Gradio interface
iface = gr.Interface(
fn=segment_image,
inputs=[
gr.Image(type="numpy", label="Upload an image"),
gr.Textbox(label="Specify object to segment (e.g., dog, cat, grass)")
],
outputs=[
gr.Image(type="numpy", label="Segmented Image"),
gr.Textbox(label="Status")
],
title="Segment Anything Model (SAM) with Object Specification",
description="Upload an image and specify an object to segment."
)
# Launch the interface
iface.launch() |