Multimodal_App / app.py
sagar007's picture
Update app.py
80e2071 verified
raw
history blame
6.52 kB
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread
import numpy as np
from PIL import Image
import subprocess
import spaces
# Install flash-attention
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Constants
TITLE = "<h1><center>Phi 3.5 Multimodal (Text + Vision)</center></h1>"
DESCRIPTION = "# Phi-3.5 Multimodal Demo (Text + Vision)"
# Model configurations
TEXT_MODEL_ID = "microsoft/Phi-3.5-mini-instruct"
VISION_MODEL_ID = "microsoft/Phi-3.5-vision-instruct"
device = "cuda" if torch.cuda.is_available() else "cpu"
# Quantization config for text model
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
# Load models and tokenizers
text_tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_ID)
text_model = AutoModelForCausalLM.from_pretrained(
TEXT_MODEL_ID,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
vision_model = AutoModelForCausalLM.from_pretrained(
VISION_MODEL_ID,
trust_remote_code=True,
torch_dtype="auto",
attn_implementation="flash_attention_2"
).to(device).eval()
vision_processor = AutoProcessor.from_pretrained(VISION_MODEL_ID, trust_remote_code=True)
# Helper functions
@spaces.GPU
def stream_text_chat(message, history, system_prompt, temperature=0.8, max_new_tokens=1024, top_p=1.0, top_k=20):
conversation = [{"role": "system", "content": system_prompt}]
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
input_ids = text_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(text_model.device)
streamer = TextIteratorStreamer(text_tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=temperature > 0,
top_p=top_p,
top_k=top_k,
temperature=temperature,
eos_token_id=[128001, 128008, 128009],
streamer=streamer,
)
with torch.no_grad():
thread = Thread(target=text_model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield history + [[message, buffer]]
@spaces.GPU
def process_vision_query(image, text_input):
prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n"
# Ensure the image is in the correct format
if isinstance(image, np.ndarray):
# Convert numpy array to PIL Image
image = Image.fromarray(image).convert("RGB")
elif not isinstance(image, Image.Image):
raise ValueError("Invalid image type. Expected PIL.Image.Image or numpy.ndarray")
# Now process the image
inputs = vision_processor(prompt, images=image, return_tensors="pt").to(device)
with torch.no_grad():
generate_ids = vision_model.generate(
**inputs,
max_new_tokens=1000,
eos_token_id=vision_processor.tokenizer.eos_token_id
)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
return response
# Modified combined chat function
def combined_chat(message, image, history, system_prompt, temperature, max_new_tokens, top_p, top_k):
if image is not None:
# Process image query
response = process_vision_query(image, message)
history.append((message, response))
return history, None
else:
# Process text query
return stream_text_chat(message, history, system_prompt, temperature, max_new_tokens, top_p, top_k), None
# Function to toggle between text and image input
def toggle_input(choice):
if choice == "Text":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
# Custom CSS
custom_css = """
body { background-color: #343541; color: #ececf1; font-family: 'Arial', sans-serif; }
.gradio-container { max-width: 800px !important; margin: auto; }
#chatbot { height: 400px; overflow-y: auto; }
#input-container { display: flex; align-items: center; }
#msg, #image-input { flex-grow: 1; margin-right: 10px; }
#submit-btn { min-width: 60px; }
footer { text-align: center; margin-top: 2rem; color: #acacbe; }
"""
# Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
chatbot = gr.Chatbot(elem_id="chatbot")
with gr.Row(elem_id="input-container"):
input_type = gr.Radio(["Text", "Image"], value="Text", label="Input Type")
with gr.Column(visible=True) as text_input:
msg = gr.Textbox(
show_label=False,
placeholder="Send a message...",
elem_id="msg"
)
with gr.Column(visible=False) as image_input:
image = gr.Image(type="pil", elem_id="image-input")
submit_btn = gr.Button("Send", elem_id="submit-btn")
clear_btn = gr.Button("Clear Chat", variant="secondary")
with gr.Accordion("Advanced Options", open=False):
system_prompt = gr.Textbox(value="You are a helpful assistant", label="System Prompt")
temperature = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature")
max_new_tokens = gr.Slider(minimum=128, maximum=8192, step=1, value=1024, label="Max new tokens")
top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p")
top_k = gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k")
input_type.change(toggle_input, input_type, [text_input, image_input])
submit_btn.click(combined_chat, [msg, image, chatbot, system_prompt, temperature, max_new_tokens, top_p, top_k], [chatbot, image])
clear_btn.click(lambda: ([], None), None, [chatbot, image], queue=False)
gr.HTML("<footer>Powered by Phi 3.5 Multimodal AI</footer>")
if __name__ == "__main__":
demo.launch()