File size: 4,424 Bytes
820ac3d
a5e055b
5904b1d
7e2d83a
820ac3d
7e2d83a
a5e055b
820ac3d
 
 
d45486e
820ac3d
 
 
a5e055b
820ac3d
ab8bcac
a5e055b
820ac3d
 
 
 
ab8bcac
 
5904b1d
820ac3d
 
 
 
 
ab8bcac
 
5904b1d
820ac3d
 
 
 
 
 
 
 
 
 
 
 
 
 
ab8bcac
820ac3d
 
 
 
 
 
 
 
 
 
 
 
a5e055b
820ac3d
 
 
7e2d83a
820ac3d
 
 
 
11cd804
820ac3d
 
 
 
7e2d83a
820ac3d
 
 
 
 
 
106d95c
820ac3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e055b
820ac3d
f073c65
820ac3d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, TextIteratorStreamer
import gradio as gr
from threading import Thread
from PIL import Image

# Constants
TITLE = "<h1><center>Phi 3.5 Multimodal (Text + Vision)</center></h1>"
DESCRIPTION = "# Phi-3.5 Multimodal Demo (Text + Vision)"

# Model configurations
TEXT_MODEL_ID = "microsoft/Phi-3.5-mini-instruct"
VISION_MODEL_ID = "microsoft/Phi-3.5-vision-instruct"

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")

# Load models and tokenizers
text_tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_ID)
text_model = AutoModelForCausalLM.from_pretrained(
    TEXT_MODEL_ID,
    torch_dtype=torch.float16 if device == "cuda" else torch.float32,
    device_map="auto",
    low_cpu_mem_usage=True
)

vision_model = AutoModelForCausalLM.from_pretrained(
    VISION_MODEL_ID, 
    trust_remote_code=True, 
    torch_dtype=torch.float16 if device == "cuda" else torch.float32,
    attn_implementation="flash_attention_2" if device == "cuda" else None,
    low_cpu_mem_usage=True
).to(device).eval()

vision_processor = AutoProcessor.from_pretrained(VISION_MODEL_ID, trust_remote_code=True)

# Helper functions
def stream_text_chat(message, history, system_prompt, temperature=0.8, max_new_tokens=1024, top_p=1.0, top_k=20):
    conversation = [{"role": "system", "content": system_prompt}]
    for prompt, answer in history:
        conversation.extend([
            {"role": "user", "content": prompt},
            {"role": "assistant", "content": answer},
        ])
    conversation.append({"role": "user", "content": message})

    input_ids = text_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(device)
    streamer = TextIteratorStreamer(text_tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids=input_ids,
        max_new_tokens=max_new_tokens,
        do_sample=temperature > 0,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        eos_token_id=[128001, 128008, 128009],
        streamer=streamer,
    )

    with torch.no_grad():
        thread = Thread(target=text_model.generate, kwargs=generate_kwargs)
        thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer

def process_vision_query(image, text_input):
    prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n"
    image = Image.fromarray(image).convert("RGB")
    inputs = vision_processor(prompt, image, return_tensors="pt").to(device)
    
    with torch.no_grad():
        generate_ids = vision_model.generate(
            **inputs, 
            max_new_tokens=1000, 
            eos_token_id=vision_processor.tokenizer.eos_token_id
        )
    
    generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
    response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
    return response

# Gradio interface
with gr.Blocks() as demo:
    gr.HTML(TITLE)
    gr.Markdown(DESCRIPTION)

    with gr.Tab("Text Model (Phi-3.5-mini)"):
        chatbot = gr.Chatbot(height=600)
        gr.ChatInterface(
            fn=stream_text_chat,
            chatbot=chatbot,
            additional_inputs=[
                gr.Textbox(value="You are a helpful assistant", label="System Prompt"),
                gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature"),
                gr.Slider(minimum=128, maximum=8192, step=1, value=1024, label="Max new tokens"),
                gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p"),
                gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k"),
            ],
        )

    with gr.Tab("Vision Model (Phi-3.5-vision)"):
        with gr.Row():
            with gr.Column():
                vision_input_img = gr.Image(label="Input Picture")
                vision_text_input = gr.Textbox(label="Question")
                vision_submit_btn = gr.Button(value="Submit")
            with gr.Column():
                vision_output_text = gr.Textbox(label="Output Text")
        
        vision_submit_btn.click(process_vision_query, [vision_input_img, vision_text_input], [vision_output_text])

if __name__ == "__main__":
    demo.launch()