Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,184 +1,273 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer,
|
4 |
from PIL import Image
|
5 |
-
import
|
6 |
import spaces
|
|
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
print("Tokenizer and processor loaded successfully!")
|
17 |
-
|
18 |
-
# For text-only generation with GPU on demand
|
19 |
-
@spaces.GPU
|
20 |
-
def generate_text(prompt, max_length=128):
|
21 |
-
try:
|
22 |
-
global model
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
"sagar007/Lava_phi",
|
29 |
-
torch_dtype=torch.float16, # Use float16 on GPU
|
30 |
-
device_map="auto" # This will put the model on GPU automatically
|
31 |
-
)
|
32 |
-
print("Model loaded successfully!")
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
)
|
45 |
-
|
46 |
-
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
47 |
-
|
48 |
-
# Extract only the model's response
|
49 |
-
if "gpt:" in generated_text:
|
50 |
-
generated_text = generated_text.split("gpt:", 1)[1].strip()
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
@spaces.GPU
|
59 |
-
def process_image_and_prompt(image, prompt, max_length=128):
|
60 |
try:
|
61 |
-
|
62 |
-
return "No image provided. Please upload an image."
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
"sagar007/Lava_phi",
|
71 |
-
torch_dtype=torch.float16, # Use float16 on GPU
|
72 |
-
device_map="auto" # This will put the model on GPU automatically
|
73 |
)
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
)
|
93 |
-
|
94 |
-
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
95 |
-
|
96 |
-
# Extract only the model's response
|
97 |
-
if "gpt:" in generated_text:
|
98 |
-
generated_text = generated_text.split("gpt:", 1)[1].strip()
|
99 |
|
100 |
-
return
|
101 |
except Exception as e:
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
# Create Gradio Interface
|
106 |
-
with gr.Blocks(title="LLaVA-Phi: Vision-Language Model") as demo:
|
107 |
-
gr.Markdown("# LLaVA-Phi: Vision-Language Model")
|
108 |
-
gr.Markdown("This model uses ZeroGPU technology - GPU resources are allocated only when generating responses and released afterward.")
|
109 |
-
|
110 |
-
with gr.Tab("Text Generation"):
|
111 |
-
with gr.Row():
|
112 |
-
with gr.Column():
|
113 |
-
text_input = gr.Textbox(label="Enter your prompt", lines=3, placeholder="What is artificial intelligence?")
|
114 |
-
text_max_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Maximum response length")
|
115 |
-
text_button = gr.Button("Generate")
|
116 |
-
|
117 |
-
with gr.Column():
|
118 |
-
text_output = gr.Textbox(label="Generated response", lines=8)
|
119 |
-
text_status = gr.Markdown("*Status: Ready*")
|
120 |
-
|
121 |
-
def text_fn(prompt, max_length):
|
122 |
-
text_status.update("*Status: Generating response...*")
|
123 |
-
try:
|
124 |
-
response = generate_text(prompt, max_length)
|
125 |
-
text_status.update("*Status: Complete*")
|
126 |
-
return response
|
127 |
-
except Exception as e:
|
128 |
-
text_status.update("*Status: Error*")
|
129 |
-
return f"Error: {str(e)}"
|
130 |
-
|
131 |
-
text_button.click(
|
132 |
-
fn=text_fn,
|
133 |
-
inputs=[text_input, text_max_length],
|
134 |
-
outputs=text_output
|
135 |
-
)
|
136 |
-
|
137 |
-
with gr.Tab("Image + Text Analysis"):
|
138 |
-
with gr.Row():
|
139 |
-
with gr.Column():
|
140 |
-
image_input = gr.Image(type="pil", label="Upload an image")
|
141 |
-
image_text_input = gr.Textbox(label="Enter your prompt about the image",
|
142 |
-
lines=2,
|
143 |
-
placeholder="Describe this image in detail.")
|
144 |
-
image_max_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Maximum response length")
|
145 |
-
image_button = gr.Button("Analyze")
|
146 |
-
|
147 |
-
with gr.Column():
|
148 |
-
image_output = gr.Textbox(label="Model response", lines=8)
|
149 |
-
image_status = gr.Markdown("*Status: Ready*")
|
150 |
-
|
151 |
-
def image_fn(image, prompt, max_length):
|
152 |
-
image_status.update("*Status: Analyzing image...*")
|
153 |
-
try:
|
154 |
-
response = process_image_and_prompt(image, prompt, max_length)
|
155 |
-
image_status.update("*Status: Complete*")
|
156 |
-
return response
|
157 |
-
except Exception as e:
|
158 |
-
image_status.update("*Status: Error*")
|
159 |
-
return f"Error: {str(e)}"
|
160 |
-
|
161 |
-
image_button.click(
|
162 |
-
fn=image_fn,
|
163 |
-
inputs=[image_input, image_text_input, image_max_length],
|
164 |
-
outputs=image_output
|
165 |
-
)
|
166 |
-
|
167 |
-
# Example inputs for each tab
|
168 |
-
gr.Examples(
|
169 |
-
examples=["What is the advantage of vision-language models?",
|
170 |
-
"Explain how multimodal AI models work.",
|
171 |
-
"Tell me a short story about robots."],
|
172 |
-
inputs=text_input
|
173 |
-
)
|
174 |
-
|
175 |
-
# Status indicator
|
176 |
-
with gr.Row():
|
177 |
-
gr.Markdown("*Note: When you click Generate or Analyze, a GPU will be temporarily allocated to process your request and then released. The first request may take longer as the model needs to be loaded.*")
|
178 |
|
179 |
-
# Launch the app
|
180 |
if __name__ == "__main__":
|
|
|
181 |
demo.launch(
|
182 |
-
|
183 |
-
|
|
|
184 |
)
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPProcessor, CLIPModel
|
4 |
from PIL import Image
|
5 |
+
import logging
|
6 |
import spaces
|
7 |
+
import numpy
|
8 |
|
9 |
+
# Setup logging
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
|
12 |
+
class LLaVAPhiModel:
|
13 |
+
def __init__(self, model_id="sagar007/Lava_phi"):
|
14 |
+
self.device = "cuda"
|
15 |
+
self.model_id = model_id
|
16 |
+
logging.info("Initializing LLaVA-Phi model...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# Initialize tokenizer
|
19 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
20 |
+
if self.tokenizer.pad_token is None:
|
21 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
try:
|
24 |
+
# Use CLIPProcessor directly instead of AutoProcessor
|
25 |
+
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
26 |
+
logging.info("Successfully loaded CLIP processor")
|
27 |
+
except Exception as e:
|
28 |
+
logging.error(f"Failed to load CLIP processor: {str(e)}")
|
29 |
+
self.processor = None
|
30 |
|
31 |
+
self.history = []
|
32 |
+
self.model = None
|
33 |
+
self.clip = None
|
34 |
+
|
35 |
+
@spaces.GPU
|
36 |
+
def ensure_models_loaded(self):
|
37 |
+
"""Ensure models are loaded in GPU context"""
|
38 |
+
if self.model is None:
|
39 |
+
# Load main model with updated quantization config
|
40 |
+
from transformers import BitsAndBytesConfig
|
41 |
+
quantization_config = BitsAndBytesConfig(
|
42 |
+
load_in_4bit=True,
|
43 |
+
bnb_4bit_compute_dtype=torch.float16,
|
44 |
+
bnb_4bit_use_double_quant=True,
|
45 |
+
bnb_4bit_quant_type="nf4"
|
46 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
try:
|
49 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
50 |
+
self.model_id,
|
51 |
+
quantization_config=quantization_config,
|
52 |
+
device_map="auto",
|
53 |
+
torch_dtype=torch.bfloat16,
|
54 |
+
trust_remote_code=True
|
55 |
+
)
|
56 |
+
self.model.config.pad_token_id = self.tokenizer.eos_token_id
|
57 |
+
logging.info("Successfully loaded main model")
|
58 |
+
except Exception as e:
|
59 |
+
logging.error(f"Failed to load main model: {str(e)}")
|
60 |
+
raise
|
61 |
+
|
62 |
+
if self.clip is None:
|
63 |
+
try:
|
64 |
+
# Use CLIPModel directly instead of AutoModel
|
65 |
+
self.clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(self.device)
|
66 |
+
logging.info("Successfully loaded CLIP model")
|
67 |
+
except Exception as e:
|
68 |
+
logging.error(f"Failed to load CLIP model: {str(e)}")
|
69 |
+
self.clip = None
|
70 |
+
|
71 |
+
@spaces.GPU
|
72 |
+
def process_image(self, image):
|
73 |
+
"""Process image through CLIP if available"""
|
74 |
+
try:
|
75 |
+
self.ensure_models_loaded()
|
76 |
+
|
77 |
+
if self.clip is None or self.processor is None:
|
78 |
+
logging.warning("CLIP model or processor not available")
|
79 |
+
return None
|
80 |
+
|
81 |
+
# Convert image to correct format
|
82 |
+
if isinstance(image, str):
|
83 |
+
image = Image.open(image)
|
84 |
+
elif isinstance(image, numpy.ndarray):
|
85 |
+
image = Image.fromarray(image)
|
86 |
+
|
87 |
+
# Ensure image is in RGB mode
|
88 |
+
if image.mode != 'RGB':
|
89 |
+
image = image.convert('RGB')
|
90 |
+
|
91 |
+
with torch.no_grad():
|
92 |
+
try:
|
93 |
+
# Process image with error handling
|
94 |
+
image_inputs = self.processor(images=image, return_tensors="pt")
|
95 |
+
image_features = self.clip.get_image_features(
|
96 |
+
pixel_values=image_inputs.pixel_values.to(self.device)
|
97 |
+
)
|
98 |
+
logging.info("Successfully processed image through CLIP")
|
99 |
+
return image_features
|
100 |
+
except Exception as e:
|
101 |
+
logging.error(f"Error during image processing: {str(e)}")
|
102 |
+
return None
|
103 |
+
except Exception as e:
|
104 |
+
logging.error(f"Error in process_image: {str(e)}")
|
105 |
+
return None
|
106 |
+
|
107 |
+
@spaces.GPU(duration=120)
|
108 |
+
def generate_response(self, message, image=None):
|
109 |
+
try:
|
110 |
+
self.ensure_models_loaded()
|
111 |
+
|
112 |
+
if image is not None:
|
113 |
+
image_features = self.process_image(image)
|
114 |
+
has_image = image_features is not None
|
115 |
+
if not has_image:
|
116 |
+
message = "Note: Image processing is not available - continuing with text only.\n" + message
|
117 |
+
|
118 |
+
prompt = f"human: {'<image>' if has_image else ''}\n{message}\ngpt:"
|
119 |
+
context = ""
|
120 |
+
for turn in self.history[-3:]:
|
121 |
+
context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
|
122 |
+
|
123 |
+
full_prompt = context + prompt
|
124 |
+
inputs = self.tokenizer(
|
125 |
+
full_prompt,
|
126 |
+
return_tensors="pt",
|
127 |
+
padding=True,
|
128 |
+
truncation=True,
|
129 |
+
max_length=512
|
130 |
+
)
|
131 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
132 |
+
|
133 |
+
if has_image:
|
134 |
+
inputs["image_features"] = image_features
|
135 |
+
|
136 |
+
with torch.no_grad():
|
137 |
+
outputs = self.model.generate(
|
138 |
+
**inputs,
|
139 |
+
max_new_tokens=256,
|
140 |
+
min_length=20,
|
141 |
+
temperature=0.7,
|
142 |
+
do_sample=True,
|
143 |
+
top_p=0.9,
|
144 |
+
top_k=40,
|
145 |
+
repetition_penalty=1.5,
|
146 |
+
no_repeat_ngram_size=3,
|
147 |
+
use_cache=True,
|
148 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
149 |
+
eos_token_id=self.tokenizer.eos_token_id
|
150 |
+
)
|
151 |
+
else:
|
152 |
+
prompt = f"human: {message}\ngpt:"
|
153 |
+
context = ""
|
154 |
+
for turn in self.history[-3:]:
|
155 |
+
context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
|
156 |
+
|
157 |
+
full_prompt = context + prompt
|
158 |
+
inputs = self.tokenizer(
|
159 |
+
full_prompt,
|
160 |
+
return_tensors="pt",
|
161 |
+
padding=True,
|
162 |
+
truncation=True,
|
163 |
+
max_length=512
|
164 |
+
)
|
165 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
166 |
+
|
167 |
+
with torch.no_grad():
|
168 |
+
outputs = self.model.generate(
|
169 |
+
**inputs,
|
170 |
+
max_new_tokens=150,
|
171 |
+
min_length=20,
|
172 |
+
temperature=0.6,
|
173 |
+
do_sample=True,
|
174 |
+
top_p=0.85,
|
175 |
+
top_k=30,
|
176 |
+
repetition_penalty=1.8,
|
177 |
+
no_repeat_ngram_size=4,
|
178 |
+
use_cache=True,
|
179 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
180 |
+
eos_token_id=self.tokenizer.eos_token_id
|
181 |
+
)
|
182 |
+
|
183 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
184 |
+
|
185 |
+
# Clean up response
|
186 |
+
if "gpt:" in response:
|
187 |
+
response = response.split("gpt:")[-1].strip()
|
188 |
+
if "human:" in response:
|
189 |
+
response = response.split("human:")[0].strip()
|
190 |
+
if "<image>" in response:
|
191 |
+
response = response.replace("<image>", "").strip()
|
192 |
+
|
193 |
+
self.history.append((message, response))
|
194 |
+
return response
|
195 |
+
|
196 |
+
except Exception as e:
|
197 |
+
logging.error(f"Error generating response: {str(e)}")
|
198 |
+
logging.error(f"Full traceback:", exc_info=True)
|
199 |
+
return f"Error: {str(e)}"
|
200 |
+
|
201 |
+
def clear_history(self):
|
202 |
+
self.history = []
|
203 |
+
return None
|
204 |
|
205 |
+
def create_demo():
|
|
|
|
|
206 |
try:
|
207 |
+
model = LLaVAPhiModel()
|
|
|
208 |
|
209 |
+
with gr.Blocks(css="footer {visibility: hidden}") as demo:
|
210 |
+
gr.Markdown(
|
211 |
+
"""
|
212 |
+
# LLaVA-Phi Demo (ZeroGPU)
|
213 |
+
Chat with a vision-language model that can understand both text and images.
|
214 |
+
"""
|
|
|
|
|
|
|
215 |
)
|
216 |
+
|
217 |
+
chatbot = gr.Chatbot(height=400)
|
218 |
+
with gr.Row():
|
219 |
+
with gr.Column(scale=0.7):
|
220 |
+
msg = gr.Textbox(
|
221 |
+
show_label=False,
|
222 |
+
placeholder="Enter text and/or upload an image",
|
223 |
+
container=False
|
224 |
+
)
|
225 |
+
with gr.Column(scale=0.15, min_width=0):
|
226 |
+
clear = gr.Button("Clear")
|
227 |
+
with gr.Column(scale=0.15, min_width=0):
|
228 |
+
submit = gr.Button("Submit", variant="primary")
|
229 |
+
|
230 |
+
image = gr.Image(type="pil", label="Upload Image (Optional)")
|
231 |
+
|
232 |
+
def respond(message, chat_history, image):
|
233 |
+
if not message and image is None:
|
234 |
+
return chat_history
|
235 |
+
|
236 |
+
response = model.generate_response(message, image)
|
237 |
+
chat_history.append((message, response))
|
238 |
+
return "", chat_history
|
239 |
+
|
240 |
+
def clear_chat():
|
241 |
+
model.clear_history()
|
242 |
+
return None, None
|
243 |
+
|
244 |
+
submit.click(
|
245 |
+
respond,
|
246 |
+
[msg, chatbot, image],
|
247 |
+
[msg, chatbot],
|
248 |
+
)
|
249 |
+
|
250 |
+
clear.click(
|
251 |
+
clear_chat,
|
252 |
+
None,
|
253 |
+
[chatbot, image],
|
254 |
+
)
|
255 |
+
|
256 |
+
msg.submit(
|
257 |
+
respond,
|
258 |
+
[msg, chatbot, image],
|
259 |
+
[msg, chatbot],
|
260 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
+
return demo
|
263 |
except Exception as e:
|
264 |
+
logging.error(f"Error creating demo: {str(e)}")
|
265 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
|
|
267 |
if __name__ == "__main__":
|
268 |
+
demo = create_demo()
|
269 |
demo.launch(
|
270 |
+
server_name="0.0.0.0",
|
271 |
+
server_port=7860,
|
272 |
+
share=True
|
273 |
)
|