Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ import logging
|
|
6 |
import spaces
|
7 |
import numpy as np
|
8 |
|
9 |
-
# Setup logging
|
10 |
logging.basicConfig(level=logging.INFO)
|
11 |
|
12 |
class LLaVAPhiModel:
|
@@ -23,12 +22,12 @@ class LLaVAPhiModel:
|
|
23 |
self.history = []
|
24 |
self.model = None
|
25 |
self.clip = None
|
26 |
-
|
27 |
-
# Add a linear projection layer to align CLIP features with text embeddings
|
28 |
self.projection = None
|
29 |
|
30 |
@spaces.GPU
|
31 |
def ensure_models_loaded(self):
|
|
|
|
|
32 |
if self.model is None:
|
33 |
from transformers import BitsAndBytesConfig
|
34 |
quantization_config = BitsAndBytesConfig(
|
@@ -44,142 +43,97 @@ class LLaVAPhiModel:
|
|
44 |
trust_remote_code=True
|
45 |
)
|
46 |
self.model.config.pad_token_id = self.tokenizer.eos_token_id
|
47 |
-
logging.info("Successfully loaded main model")
|
48 |
|
49 |
if self.clip is None:
|
50 |
self.clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(self.device)
|
51 |
logging.info("Successfully loaded CLIP model")
|
52 |
-
|
53 |
-
|
54 |
-
embed_dim = self.model.config.hidden_size # e.g., 2048 for Phi-1.5
|
55 |
-
clip_dim = self.clip.config.projection_dim # 512 for CLIP
|
56 |
self.projection = torch.nn.Linear(clip_dim, embed_dim).to(self.device)
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
try:
|
61 |
-
self.ensure_models_loaded()
|
62 |
-
if self.clip is None or self.processor is None:
|
63 |
-
logging.warning("CLIP model or processor not available")
|
64 |
-
return None
|
65 |
-
|
66 |
-
if isinstance(image, str):
|
67 |
-
image = Image.open(image)
|
68 |
-
elif isinstance(image, np.ndarray):
|
69 |
-
image = Image.fromarray(image)
|
70 |
-
if image.mode != 'RGB':
|
71 |
-
image = image.convert('RGB')
|
72 |
-
|
73 |
-
with torch.no_grad():
|
74 |
-
image_inputs = self.processor(images=image, return_tensors="pt")
|
75 |
-
image_features = self.clip.get_image_features(
|
76 |
-
pixel_values=image_inputs.pixel_values.to(self.device)
|
77 |
-
)
|
78 |
-
# Project image features to text embedding space
|
79 |
-
projected_features = self.projection(image_features)
|
80 |
-
logging.info("Successfully processed image through CLIP")
|
81 |
-
return projected_features
|
82 |
-
except Exception as e:
|
83 |
-
logging.error(f"Error in process_image: {str(e)}")
|
84 |
-
return None
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
context = ""
|
99 |
-
for turn in self.history[-5:]:
|
100 |
-
context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
|
101 |
-
full_prompt = context + prompt
|
102 |
-
|
103 |
-
inputs = self.tokenizer(
|
104 |
-
full_prompt,
|
105 |
-
return_tensors="pt",
|
106 |
-
padding=True,
|
107 |
-
truncation=True,
|
108 |
-
max_length=1024
|
109 |
-
)
|
110 |
-
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
111 |
-
|
112 |
-
if has_image:
|
113 |
-
# Convert input_ids to embeddings
|
114 |
-
embeddings = self.model.get_input_embeddings()(inputs["input_ids"])
|
115 |
-
# Concatenate image features with text embeddings
|
116 |
-
image_features_expanded = image_features.unsqueeze(1) # Shape: [batch, 1, embed_dim]
|
117 |
-
combined_embeddings = torch.cat([image_features_expanded, embeddings], dim=1)
|
118 |
-
inputs["inputs_embeds"] = combined_embeddings
|
119 |
-
# Update attention mask to account for the extra image token
|
120 |
-
inputs["attention_mask"] = torch.cat(
|
121 |
-
[torch.ones(inputs["attention_mask"].shape[0], 1).to(self.device),
|
122 |
-
inputs["attention_mask"]],
|
123 |
-
dim=1
|
124 |
)
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
padding=True,
|
138 |
-
truncation=True,
|
139 |
-
max_length=1024
|
140 |
-
)
|
141 |
-
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
max_new_tokens=256,
|
147 |
-
min_length=20,
|
148 |
-
temperature=0.3,
|
149 |
-
do_sample=True,
|
150 |
-
top_p=0.92,
|
151 |
-
top_k=50,
|
152 |
-
repetition_penalty=1.2,
|
153 |
-
no_repeat_ngram_size=3,
|
154 |
-
use_cache=True,
|
155 |
-
pad_token_id=self.tokenizer.pad_token_id,
|
156 |
-
eos_token_id=self.tokenizer.eos_token_id
|
157 |
-
)
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
response = response.split("gpt:")[-1].strip()
|
162 |
-
if "human:" in response:
|
163 |
-
response = response.split("human:")[0].strip()
|
164 |
-
if "<image>" in response:
|
165 |
-
response = response.replace("<image>", "").strip()
|
166 |
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
if __name__ == "__main__":
|
185 |
demo = create_demo()
|
|
|
6 |
import spaces
|
7 |
import numpy as np
|
8 |
|
|
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
|
11 |
class LLaVAPhiModel:
|
|
|
22 |
self.history = []
|
23 |
self.model = None
|
24 |
self.clip = None
|
|
|
|
|
25 |
self.projection = None
|
26 |
|
27 |
@spaces.GPU
|
28 |
def ensure_models_loaded(self):
|
29 |
+
if not torch.cuda.is_available():
|
30 |
+
raise RuntimeError("CUDA is not available. This model requires a GPU.")
|
31 |
if self.model is None:
|
32 |
from transformers import BitsAndBytesConfig
|
33 |
quantization_config = BitsAndBytesConfig(
|
|
|
43 |
trust_remote_code=True
|
44 |
)
|
45 |
self.model.config.pad_token_id = self.tokenizer.eos_token_id
|
46 |
+
logging.info("Successfully loaded main model on GPU")
|
47 |
|
48 |
if self.clip is None:
|
49 |
self.clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(self.device)
|
50 |
logging.info("Successfully loaded CLIP model")
|
51 |
+
embed_dim = self.model.config.hidden_size
|
52 |
+
clip_dim = self.clip.config.projection_dim
|
|
|
|
|
53 |
self.projection = torch.nn.Linear(clip_dim, embed_dim).to(self.device)
|
54 |
|
55 |
+
# Rest of your class (process_image, generate_response, etc.) remains unchanged
|
56 |
+
# ... (omitted for brevity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
def create_demo():
|
59 |
+
try:
|
60 |
+
model = LLaVAPhiModel()
|
61 |
+
|
62 |
+
demo = gr.Blocks(css="footer {visibility: hidden}")
|
63 |
+
with demo:
|
64 |
+
gr.Markdown(
|
65 |
+
"""
|
66 |
+
# LLaVA-Phi Demo (Optimized for Accuracy)
|
67 |
+
Chat with a vision-language model that can understand both text and images.
|
68 |
+
"""
|
69 |
+
)
|
70 |
|
71 |
+
chatbot = gr.Chatbot(height=400)
|
72 |
+
with gr.Row():
|
73 |
+
with gr.Column(scale=0.7):
|
74 |
+
msg = gr.Textbox(
|
75 |
+
show_label=False,
|
76 |
+
placeholder="Enter text and/or upload an image",
|
77 |
+
container=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
)
|
79 |
+
with gr.Column(scale=0.15, min_width=0):
|
80 |
+
clear = gr.Button("Clear")
|
81 |
+
with gr.Column(scale=0.15, min_width=0):
|
82 |
+
submit = gr.Button("Submit", variant="primary")
|
83 |
+
|
84 |
+
image = gr.Image(type="pil", label="Upload Image (Optional)")
|
85 |
+
|
86 |
+
with gr.Accordion("Advanced Settings", open=False):
|
87 |
+
gr.Markdown("Adjust these parameters to control hallucination tendency")
|
88 |
+
temp_slider = gr.Slider(0.1, 1.0, value=0.3, step=0.1, label="Temperature (lower = more factual)")
|
89 |
+
top_p_slider = gr.Slider(0.5, 1.0, value=0.92, step=0.01, label="Top-p (nucleus sampling)")
|
90 |
+
top_k_slider = gr.Slider(10, 100, value=50, step=5, label="Top-k")
|
91 |
+
rep_penalty_slider = gr.Slider(1.0, 2.0, value=1.2, step=0.1, label="Repetition Penalty")
|
92 |
+
update_params = gr.Button("Update Parameters")
|
93 |
+
|
94 |
+
def respond(message, chat_history, image):
|
95 |
+
if not message and image is None:
|
96 |
+
return chat_history
|
97 |
|
98 |
+
response = model.generate_response(message, image)
|
99 |
+
chat_history.append((message, response))
|
100 |
+
return "", chat_history
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
def clear_chat():
|
103 |
+
model.clear_history()
|
104 |
+
return None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
def update_params_fn(temp, top_p, top_k, rep_penalty):
|
107 |
+
return model.update_generation_params(temp, top_p, top_k, rep_penalty)
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
submit.click(
|
110 |
+
respond,
|
111 |
+
[msg, chatbot, image],
|
112 |
+
[msg, chatbot],
|
113 |
+
)
|
114 |
|
115 |
+
clear.click(
|
116 |
+
clear_chat,
|
117 |
+
None,
|
118 |
+
[chatbot, image],
|
119 |
+
)
|
120 |
+
|
121 |
+
msg.submit(
|
122 |
+
respond,
|
123 |
+
[msg, chatbot, image],
|
124 |
+
[msg, chatbot],
|
125 |
+
)
|
126 |
+
|
127 |
+
update_params.click(
|
128 |
+
update_params_fn,
|
129 |
+
[temp_slider, top_p_slider, top_k_slider, rep_penalty_slider],
|
130 |
+
None
|
131 |
+
)
|
132 |
+
|
133 |
+
return demo
|
134 |
+
except Exception as e:
|
135 |
+
logging.error(f"Error creating demo: {str(e)}")
|
136 |
+
raise
|
137 |
|
138 |
if __name__ == "__main__":
|
139 |
demo = create_demo()
|