File size: 7,125 Bytes
8e31ab1
 
44f3097
8e31ab1
8d741e2
44f3097
8e31ab1
44f3097
 
8d741e2
44f3097
 
 
 
e266b1f
44f3097
e266b1f
44f3097
 
8d741e2
e266b1f
44f3097
8d741e2
44f3097
 
 
 
 
 
 
 
 
 
 
 
 
e266b1f
8d741e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e266b1f
44f3097
8d741e2
e266b1f
44f3097
 
8d741e2
e266b1f
8d741e2
 
 
44f3097
 
 
 
 
 
 
 
 
 
 
 
8d741e2
44f3097
8d741e2
 
44f3097
8d741e2
44f3097
e266b1f
8d741e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e266b1f
44f3097
8d741e2
e266b1f
8d741e2
 
 
44f3097
8d741e2
 
 
 
 
 
 
 
44f3097
 
 
 
 
 
 
 
 
 
 
 
 
8d741e2
 
44f3097
8d741e2
 
 
 
 
 
 
 
 
 
 
 
 
 
44f3097
 
 
 
 
 
 
 
 
 
 
 
 
8d741e2
 
44f3097
8d741e2
 
 
 
 
 
 
 
 
 
 
 
44f3097
 
 
e266b1f
44f3097
8e31ab1
8d741e2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
from PIL import Image
import os
import spaces

# Initial setup without loading model to device
print("Setting up the application...")

# We'll load the model in the GPU functions to avoid CPU memory issues
model = None
tokenizer = AutoTokenizer.from_pretrained("sagar007/Lava_phi")
processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")

print("Tokenizer and processor loaded successfully!")

# For text-only generation with GPU on demand
@spaces.GPU
def generate_text(prompt, max_length=128):
    try:
        global model
        
        # Load model if not already loaded
        if model is None:
            print("Loading model on first request...")
            model = AutoModelForCausalLM.from_pretrained(
                "sagar007/Lava_phi",
                torch_dtype=torch.float16,  # Use float16 on GPU
                device_map="auto"  # This will put the model on GPU automatically
            )
            print("Model loaded successfully!")
        
        inputs = tokenizer(f"human: {prompt}\ngpt:", return_tensors="pt").to(model.device)
        
        # Generate with GPU
        with torch.no_grad():
            outputs = model.generate(
                **inputs, 
                max_new_tokens=max_length,
                do_sample=True,
                temperature=0.7,
                top_p=0.9,
            )
        
        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        # Extract only the model's response
        if "gpt:" in generated_text:
            generated_text = generated_text.split("gpt:", 1)[1].strip()
            
        return generated_text
    except Exception as e:
        # Capture and return any errors
        return f"Error generating text: {str(e)}"

# For image and text processing with GPU on demand
@spaces.GPU
def process_image_and_prompt(image, prompt, max_length=128):
    try:
        if image is None:
            return "No image provided. Please upload an image."
        
        global model
        
        # Load model if not already loaded
        if model is None:
            print("Loading model on first request...")
            model = AutoModelForCausalLM.from_pretrained(
                "sagar007/Lava_phi",
                torch_dtype=torch.float16,  # Use float16 on GPU
                device_map="auto"  # This will put the model on GPU automatically
            )
            print("Model loaded successfully!")
        
        # Process image
        image_tensor = processor(images=image, return_tensors="pt").pixel_values.to(model.device)
        
        # Tokenize input with image token
        inputs = tokenizer(f"human: <image>\n{prompt}\ngpt:", return_tensors="pt").to(model.device)
        
        # Generate with GPU
        with torch.no_grad():
            outputs = model.generate(
                input_ids=inputs["input_ids"],
                attention_mask=inputs["attention_mask"],
                images=image_tensor,
                max_new_tokens=max_length,
                do_sample=True,
                temperature=0.7,
                top_p=0.9,
            )
        
        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        # Extract only the model's response
        if "gpt:" in generated_text:
            generated_text = generated_text.split("gpt:", 1)[1].strip()
            
        return generated_text
    except Exception as e:
        # Capture and return any errors
        return f"Error processing image: {str(e)}"

# Create Gradio Interface
with gr.Blocks(title="LLaVA-Phi: Vision-Language Model") as demo:
    gr.Markdown("# LLaVA-Phi: Vision-Language Model")
    gr.Markdown("This model uses ZeroGPU technology - GPU resources are allocated only when generating responses and released afterward.")
    
    with gr.Tab("Text Generation"):
        with gr.Row():
            with gr.Column():
                text_input = gr.Textbox(label="Enter your prompt", lines=3, placeholder="What is artificial intelligence?")
                text_max_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Maximum response length")
                text_button = gr.Button("Generate")
            
            with gr.Column():
                text_output = gr.Textbox(label="Generated response", lines=8)
                text_status = gr.Markdown("*Status: Ready*")
        
        def text_fn(prompt, max_length):
            text_status.update("*Status: Generating response...*")
            try:
                response = generate_text(prompt, max_length)
                text_status.update("*Status: Complete*")
                return response
            except Exception as e:
                text_status.update("*Status: Error*")
                return f"Error: {str(e)}"
        
        text_button.click(
            fn=text_fn,
            inputs=[text_input, text_max_length],
            outputs=text_output
        )
    
    with gr.Tab("Image + Text Analysis"):
        with gr.Row():
            with gr.Column():
                image_input = gr.Image(type="pil", label="Upload an image")
                image_text_input = gr.Textbox(label="Enter your prompt about the image", 
                                              lines=2, 
                                              placeholder="Describe this image in detail.")
                image_max_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Maximum response length")
                image_button = gr.Button("Analyze")
            
            with gr.Column():
                image_output = gr.Textbox(label="Model response", lines=8)
                image_status = gr.Markdown("*Status: Ready*")
        
        def image_fn(image, prompt, max_length):
            image_status.update("*Status: Analyzing image...*")
            try:
                response = process_image_and_prompt(image, prompt, max_length)
                image_status.update("*Status: Complete*")
                return response
            except Exception as e:
                image_status.update("*Status: Error*")
                return f"Error: {str(e)}"
        
        image_button.click(
            fn=image_fn,
            inputs=[image_input, image_text_input, image_max_length],
            outputs=image_output
        )
    
    # Example inputs for each tab
    gr.Examples(
        examples=["What is the advantage of vision-language models?", 
                  "Explain how multimodal AI models work.",
                  "Tell me a short story about robots."],
        inputs=text_input
    )
    
    # Status indicator
    with gr.Row():
        gr.Markdown("*Note: When you click Generate or Analyze, a GPU will be temporarily allocated to process your request and then released. The first request may take longer as the model needs to be loaded.*")

# Launch the app
if __name__ == "__main__":
    demo.launch(
        enable_queue=True,
        show_error=True
    )