Spaces:
Runtime error
Runtime error
import torch | |
from torchvision.models import resnet50 | |
from torchvision import transforms | |
from PIL import Image | |
import gradio as gr | |
# Load model | |
model = resnet50(weights=None) | |
model.fc = torch.nn.Linear(model.fc.in_features, 5) | |
model.load_state_dict(torch.load("resnet50_dr.pth", map_location="cpu")) | |
model.eval() | |
class_names = ["No DR", "Mild", "Moderate", "Severe", "Proliferative DR"] | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]) | |
]) | |
def predict(image): | |
image = image.convert("RGB") | |
img_tensor = transform(image).unsqueeze(0) | |
with torch.no_grad(): | |
outputs = model(img_tensor) | |
_, predicted = torch.max(outputs, 1) | |
return class_names[predicted.item()] | |
gr.Interface(fn=predict, inputs="image", outputs="text").launch() | |