File size: 5,755 Bytes
9aa37ee
7058ffd
9aa37ee
 
f7972c6
 
9aa37ee
 
 
 
 
 
 
 
 
 
07f77e4
9aa37ee
f7972c6
 
 
 
 
 
9aa37ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07f77e4
9aa37ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7972c6
7397d2d
 
7058ffd
 
f7972c6
9aa37ee
 
 
 
 
 
 
 
 
 
 
 
 
 
7397d2d
 
7058ffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7397d2d
 
7058ffd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import random
import json

from pathlib import Path

import gradio as gr
from pydantic import BaseModel
from vllm import LLM, SamplingParams
from vllm.sampling_params import GuidedDecodingParams


VLLM_MODEL_NAME = os.getenv("VLLM_MODEL_NAME")
VLLM_GPU_MEMORY_UTILIZATION = float(os.getenv("VLLM_GPU_MEMORY_UTILIZATION"))
VLLM_MAX_SEQ_LEN = int(os.getenv("VLLM_MAX_SEQ_LEN"))
HF_TOKEN = os.getenv("HF_TOKEN")
VLLM_DTYPE = os.getenv("VLLM_DTYPE")

# -------------------------------- HELPERS -------------------------------------
def load_prompt(path: Path) -> str:
    with path.open("r") as file:
        prompt = file.read()
    return prompt

# --------------------------------  Data Models  -------------------------------
class StructuredQueryRewriteResponse(BaseModel):
    general: str | None
    subjective: str | None
    purpose: str | None
    technical: str | None
    curiosity: str | None

class QueryRewrite(BaseModel):
    rewrites: list[str] | None = None
    structured: StructuredQueryRewriteResponse | None = None

# --------------------------------  VLLM  --------------------------------------
local_llm = LLM(
    model=VLLM_MODEL_NAME,
    max_model_len=VLLM_MAX_SEQ_LEN,
    gpu_memory_utilization=VLLM_GPU_MEMORY_UTILIZATION,
    hf_token=HF_TOKEN,
    enforce_eager=True,
    dtype=VLLM_DTYPE,
)

json_schema = StructuredQueryRewriteResponse.model_json_schema()
guided_decoding_params_json = GuidedDecodingParams(json=json_schema)
sampling_params_json = SamplingParams(
    guided_decoding=guided_decoding_params_json,
    temperature=0.7,
    top_p=0.8,
    repetition_penalty=1.05,
    max_tokens=1024,
)
vllm_system_prompt = (
    "You are a search query optimization assistant built into"
    " music genre search engine, helping users discover novel music genres."
)
vllm_prompt = load_prompt(Path("./prompts/local.txt"))


# Dummy model functions for demonstration
def recommend_sadaimrec(query: str):
    prompt = vllm_prompt.format(query=query)
    messages = [
        {"role": "system", "content": vllm_system_prompt},
        {"role": "user", "content": prompt},
    ]
    outputs = local_llm.chat(
        messages=messages,
        sampling_params=sampling_params_json,
    )
    rewrite_json = json.loads(outputs[0].outputs[0].text)
    rewrite = QueryRewrite(
        rewrites=[x for x in list(rewrite_json.values()) if x is not None],
        structured=rewrite_json,
    )
    return f"SADAIMREC: response to '{rewrite.model_dump_json(indent=4)}'"


def recommend_chatgpt(query: str):
    return f"CHATGPT: response to '{query}'"


# Mapping names to functions
pipelines = {
    "sadaimrec": recommend_sadaimrec,
    "chatgpt": recommend_chatgpt,
}


# Interface logic
def generate_responses(query):
    # Randomize model order
    pipeline_names = list(pipelines.keys())
    random.shuffle(pipeline_names)

    # Generate responses
    resp1 = pipelines[pipeline_names[0]](query)
    resp2 = pipelines[pipeline_names[1]](query)

    # Return texts and hidden labels
    return resp1, resp2, pipeline_names[0], pipeline_names[1]


# Callback to capture vote
def handle_vote(selected, label1, label2, resp1, resp2):
    chosen_name = label1 if selected == "Option 1" else label2
    chosen_resp = resp1 if selected == "Option 1" else resp2
    print(f"User voted for {chosen_name}: '{chosen_resp}'")
    return (
        "Thank you for your vote! Restarting in 2 seconds...",
        gr.update(active=True),
    )


def reset_ui():
    return (
        gr.update(value="", visible=False),  # hide row
        gr.update(value=""),  # clear query
        gr.update(visible=False),  # hide radio
        gr.update(visible=False),  # hide vote button
        gr.update(value=""),  # clear Option 1 text
        gr.update(value=""),  # clear Option 2 text
        gr.update(value=""),  # clear result
        gr.update(active=False),
    )


with gr.Blocks() as demo:
    gr.Markdown("# Music Genre Recommendation Side-By-Side Comparison")
    query = gr.Textbox(label="Your Query")
    submit_btn = gr.Button("Submit")
    # timer that resets ui after feedback is sent
    reset_timer = gr.Timer(value=2.0, active=False)

    # Hidden components to store model responses and names
    with gr.Row(visible=False) as response_row:
        response_1 = gr.Textbox(label="Option 1", interactive=False)
        response_2 = gr.Textbox(label="Option 2", interactive=False)
    model_label_1 = gr.Textbox(visible=False)
    model_label_2 = gr.Textbox(visible=False)

    # Feedback
    vote = gr.Radio(
        ["Option 1", "Option 2"], label="Select Best Response", visible=False
    )
    vote_btn = gr.Button("Vote", visible=False)
    result = gr.Textbox(label="Console", interactive=False)

    # On submit
    submit_btn.click(  # generate
        fn=generate_responses,
        inputs=[query],
        outputs=[response_1, response_2, model_label_1, model_label_2],
    )
    submit_btn.click(  # update ui
        fn=lambda: (
            gr.update(visible=True),
            gr.update(visible=True),
            gr.update(visible=True),
        ),
        inputs=None,
        outputs=[response_row, vote, vote_btn],
    )

    # Feedback handling
    vote_btn.click(
        fn=handle_vote,
        inputs=[vote, model_label_1, model_label_2, response_1, response_2],
        outputs=[result, reset_timer],
    )
    reset_timer.tick(
        fn=reset_ui,
        inputs=None,
        outputs=[
            response_row,
            query,
            vote,
            vote_btn,
            response_1,
            response_2,
            result,
            reset_timer,
        ],
        trigger_mode="once",
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)