Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
4 |
+
|
5 |
+
# Load the processor and model from Hugging Face
|
6 |
+
processor = AutoProcessor.from_pretrained("lmms-lab/LLaVA-Video-7B-Qwen2")
|
7 |
+
model = AutoModelForCausalLM.from_pretrained("lmms-lab/LLaVA-Video-7B-Qwen2")
|
8 |
+
|
9 |
+
# Set the device (use GPU if available)
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
model.to(device)
|
12 |
+
|
13 |
+
def analyze_video(video_path):
|
14 |
+
"""
|
15 |
+
This function accepts the path to a video file,
|
16 |
+
then uses the LLaVA-Video-7B-Qwen2 model to analyze the video.
|
17 |
+
|
18 |
+
The prompt instructs the model to analyze the video and return
|
19 |
+
the moment when the crowd is most engaged.
|
20 |
+
"""
|
21 |
+
# Define the prompt for the model
|
22 |
+
prompt = "Analyze this video of a concert and determine the moment when the crowd is most engaged."
|
23 |
+
|
24 |
+
# Process the video and prompt.
|
25 |
+
# Note: The processor is expected to handle the video input (e.g., by reading frames).
|
26 |
+
inputs = processor(text=prompt, video=video_path, return_tensors="pt")
|
27 |
+
|
28 |
+
# Move all tensor inputs to the selected device
|
29 |
+
inputs = {key: value.to(device) for key, value in inputs.items()}
|
30 |
+
|
31 |
+
# Generate the model's response
|
32 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
33 |
+
|
34 |
+
# Decode the generated tokens to a human-readable string
|
35 |
+
answer = processor.decode(outputs[0], skip_special_tokens=True)
|
36 |
+
return answer
|
37 |
+
|
38 |
+
# Create the Gradio Interface
|
39 |
+
iface = gr.Interface(
|
40 |
+
fn=analyze_video,
|
41 |
+
inputs=gr.Video(label="Upload Concert/Event Video", type="filepath"),
|
42 |
+
outputs=gr.Textbox(label="Engagement Analysis"),
|
43 |
+
title="Crowd Engagement Analyzer",
|
44 |
+
description=(
|
45 |
+
"Upload a video of a concert or event and the model will analyze "
|
46 |
+
"the video to identify the moment when the crowd is most engaged."
|
47 |
+
)
|
48 |
+
)
|
49 |
+
|
50 |
+
if __name__ == "__main__":
|
51 |
+
iface.launch()
|