Spaces:
Sleeping
Sleeping
File size: 15,113 Bytes
209e402 fb8177a 209e402 fb8177a 209e402 fb8177a 209e402 4b9a663 209e402 4b9a663 75e2ca4 4b9a663 75e2ca4 4b9a663 75e2ca4 4b9a663 209e402 4b9a663 209e402 4b9a663 209e402 4b9a663 209e402 4b9a663 209e402 4b9a663 209e402 fb8177a 209e402 fb8177a 209e402 fb8177a 209e402 75e2ca4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
from fastapi import FastAPI, File, UploadFile, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse, StreamingResponse
from pydantic import BaseModel
import uvicorn
import os
import tempfile
import shutil
from typing import List, Optional, Dict, Any, Iterator
import pathlib
import asyncio
import logging
import time
import traceback
import uuid
import json
# Configure logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Import our RAG components
from rag import RetrievalAugmentedQAPipeline, process_file, setup_vector_db
# Add local aimakerspace module to the path
import sys
sys.path.append(os.path.join(os.path.dirname(os.path.dirname(__file__)), ""))
# Import from local aimakerspace module
from aimakerspace.utils.session_manager import SessionManager
# Load environment variables
from dotenv import load_dotenv
load_dotenv()
app = FastAPI(
title="RAG Application",
description="Retrieval Augmented Generation with FastAPI and React",
version="0.1.0",
root_path="", # Important for proxy environments
)
# More robust middleware for handling HTTPS
from starlette.middleware.base import BaseHTTPMiddleware
from starlette.responses import RedirectResponse, JSONResponse
class ProxyMiddleware(BaseHTTPMiddleware):
async def dispatch(self, request, call_next):
# Log request details for debugging
logger.info(f"Request path: {request.url.path}")
logger.info(f"Request headers: {request.headers}")
# Validate request before processing
try:
start_time = time.time()
response = await call_next(request)
process_time = time.time() - start_time
response.headers["X-Process-Time"] = str(process_time)
return response
except Exception as e:
logger.error(f"Request failed: {str(e)}")
logger.error(traceback.format_exc())
return JSONResponse(
status_code=500,
content={"detail": f"Internal server error: {str(e)}"}
)
# Add custom middleware
app.add_middleware(ProxyMiddleware)
# Configure CORS - more specific configuration for Hugging Face
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, you should restrict this
allow_credentials=True,
allow_methods=["GET", "POST", "PUT", "DELETE", "OPTIONS"],
allow_headers=["*"],
expose_headers=["Content-Length", "X-Process-Time"],
max_age=600, # 10 minutes cache for preflight requests
)
# Initialize session manager
session_manager = SessionManager()
class QueryRequest(BaseModel):
session_id: str
query: str
class QueryResponse(BaseModel):
response: str
session_id: str
# Set file size limit to 10MB - adjust as needed
FILE_SIZE_LIMIT = 10 * 1024 * 1024 # 10MB
async def process_file_background(temp_path: str, filename: str, session_id: str):
"""Process file in background and set up the RAG pipeline"""
try:
start_time = time.time()
logger.info(f"Background processing started for file: {filename} (session: {session_id})")
# Set max processing time (5 minutes)
max_processing_time = 300 # seconds
# Process the file
logger.info(f"Starting text extraction for file: {filename}")
try:
texts = process_file(temp_path, filename)
logger.info(f"Processed file into {len(texts)} text chunks (took {time.time() - start_time:.2f}s)")
# Check if processing is taking too long already
if time.time() - start_time > max_processing_time / 2:
logger.warning(f"Text extraction took more than half the allowed time. Limiting chunks...")
# Limit to a smaller number if extraction took a long time
max_chunks = 50
if len(texts) > max_chunks:
logger.warning(f"Limiting text chunks from {len(texts)} to {max_chunks}")
texts = texts[:max_chunks]
except Exception as e:
logger.error(f"Error during text extraction: {str(e)}")
logger.error(traceback.format_exc())
session_manager.update_session(session_id, "failed")
os.unlink(temp_path)
return
# Setup vector database - This is the part that might be hanging
logger.info(f"Starting vector DB creation for {len(texts)} chunks")
embedding_start = time.time()
# Create a task with overall timeout
try:
async def setup_with_timeout():
return await setup_vector_db(texts)
# Wait for vector DB setup with timeout
vector_db = await asyncio.wait_for(
setup_with_timeout(),
timeout=max_processing_time - (time.time() - start_time)
)
# Get document count - check if documents property is available
if hasattr(vector_db, 'documents'):
doc_count = len(vector_db.documents)
else:
# If using the original VectorDatabase implementation that uses vectors dict
doc_count = len(vector_db.vectors) if hasattr(vector_db, 'vectors') else 0
logger.info(f"Created vector database with {doc_count} documents (took {time.time() - embedding_start:.2f}s)")
# Create RAG pipeline
logger.info(f"Creating RAG pipeline for session {session_id}")
rag_pipeline = RetrievalAugmentedQAPipeline(vector_db_retriever=vector_db)
# Store pipeline in session manager
session_manager.update_session(session_id, rag_pipeline)
logger.info(f"Updated session {session_id} with processed pipeline (total time: {time.time() - start_time:.2f}s)")
except asyncio.TimeoutError:
logger.error(f"Vector database creation timed out after {time.time() - embedding_start:.2f}s")
session_manager.update_session(session_id, "failed")
except Exception as e:
logger.error(f"Error in vector database creation: {str(e)}")
logger.error(traceback.format_exc())
session_manager.update_session(session_id, "failed")
# Clean up temp file
os.unlink(temp_path)
logger.info(f"Removed temporary file: {temp_path}")
except Exception as e:
logger.error(f"Error in background processing for session {session_id}: {str(e)}")
logger.error(traceback.format_exc()) # Log the full error traceback
# Mark the session as failed rather than removing it
session_manager.update_session(session_id, "failed")
# Try to clean up temp file if it exists
try:
if os.path.exists(temp_path):
os.unlink(temp_path)
logger.info(f"Cleaned up temporary file after error: {temp_path}")
except Exception as cleanup_error:
logger.error(f"Error cleaning up temp file: {str(cleanup_error)}")
@app.post("/upload/")
async def upload_file(background_tasks: BackgroundTasks, file: UploadFile = File(...)):
try:
logger.info(f"Received upload request for file: {file.filename}")
logger.info(f"Content type: {file.content_type}")
# Create a unique ID for this upload
upload_id = str(uuid.uuid4())
logger.info(f"Assigned upload ID: {upload_id}")
# Check file size first
file_size = 0
chunk_size = 1024 * 1024 # 1MB chunks for reading
contents = bytearray()
# Read file in chunks to avoid memory issues
try:
while True:
chunk = await asyncio.wait_for(file.read(chunk_size), timeout=60.0)
if not chunk:
break
file_size += len(chunk)
contents.extend(chunk)
# Check size limit
if file_size > FILE_SIZE_LIMIT:
logger.warning(f"File too large: {file_size/1024/1024:.2f}MB exceeds limit of {FILE_SIZE_LIMIT/1024/1024}MB")
return HTTPException(
status_code=413,
detail=f"File too large. Maximum size is {FILE_SIZE_LIMIT/1024/1024}MB"
)
# Log progress for large files
if file_size % (5 * 1024 * 1024) == 0: # Log every 5MB
logger.info(f"Upload progress: {file_size/1024/1024:.2f}MB read so far...")
except asyncio.TimeoutError:
logger.error(f"Timeout reading file: {file.filename}")
raise HTTPException(
status_code=408,
detail="Request timeout while reading file. Please try again."
)
logger.info(f"File size: {file_size/1024/1024:.2f}MB")
# Reset file stream for processing
file_content = bytes(contents)
# Create a temporary file
suffix = f".{file.filename.split('.')[-1]}"
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as temp_file:
# Write file content to temp file
temp_file.write(file_content)
temp_path = temp_file.name
logger.info(f"Created temporary file at: {temp_path}")
# Generate session ID and create session
session_id = session_manager.create_session("processing")
logger.info(f"Created session ID: {session_id}")
# Process file in background
background_tasks.add_task(
process_file_background,
temp_path,
file.filename,
session_id
)
return {"session_id": session_id, "message": "File uploaded and processing started", "upload_id": upload_id}
except Exception as e:
logger.error(f"Error processing upload: {str(e)}")
logger.error(traceback.format_exc()) # Log the full error traceback
raise HTTPException(status_code=500, detail=f"Error processing file: {str(e)}")
@app.post("/query/")
async def process_query(request: QueryRequest):
logger.info(f"Received query request for session: {request.session_id}")
# Check if session exists
if not session_manager.session_exists(request.session_id):
logger.warning(f"Session not found: {request.session_id}")
raise HTTPException(status_code=404, detail="Session not found. Please upload a document first.")
# Get session data
session_data = session_manager.get_session(request.session_id)
# Check if processing is still ongoing
if session_data == "processing":
logger.info(f"Document still processing for session: {request.session_id}")
raise HTTPException(status_code=409, detail="Document is still being processed. Please try again in a moment.")
# Check if processing failed
if session_data == "failed":
logger.error(f"Processing failed for session: {request.session_id}")
raise HTTPException(status_code=500, detail="Document processing failed. Please try uploading again.")
try:
logger.info(f"Processing query: '{request.query}' for session: {request.session_id}")
# Get response from RAG pipeline
start_time = time.time()
result = await session_data.arun_pipeline(request.query)
# Stream the response - this is key for the Star Wars effect
async def stream_response():
try:
async for chunk in result["response"]:
# Add a small delay between chunks for dramatic effect
await asyncio.sleep(0.01)
# Stream each chunk as JSON with proper encoding
yield chunk
logger.info(f"Completed streaming response (took {time.time() - start_time:.2f}s)")
except Exception as e:
logger.error(f"Error in streaming: {str(e)}")
yield f"Error during streaming: {str(e)}"
# Return streaming response
return StreamingResponse(
stream_response(),
media_type="text/plain",
)
except Exception as e:
logger.error(f"Error processing query for session {request.session_id}: {str(e)}")
logger.error(traceback.format_exc()) # Log the full error traceback
raise HTTPException(status_code=500, detail=f"Error processing query: {str(e)}")
@app.get("/health")
def health_check():
return {"status": "healthy"}
@app.get("/test")
def test_endpoint():
return {"message": "Backend is accessible"}
@app.get("/session/{session_id}/status")
async def session_status(session_id: str):
"""Check if a session exists and its processing status"""
logger.info(f"Checking status for session: {session_id}")
if not session_manager.session_exists(session_id):
logger.warning(f"Session not found: {session_id}")
return {"exists": False, "status": "not_found"}
session_data = session_manager.get_session(session_id)
if session_data == "processing":
logger.info(f"Session {session_id} is still processing")
return {"exists": True, "status": "processing"}
if session_data == "failed":
logger.error(f"Session {session_id} processing failed")
return {"exists": True, "status": "failed"}
logger.info(f"Session {session_id} is ready")
return {"exists": True, "status": "ready"}
@app.get("/debug/sessions")
async def debug_sessions():
"""Return debug information about all sessions - for diagnostic use only"""
logger.info("Accessed debug sessions endpoint")
# Get summary of all sessions
sessions_summary = session_manager.get_sessions_summary()
return sessions_summary
# For Hugging Face Spaces deployment, serve the static files from the React build
frontend_path = pathlib.Path(__file__).parent.parent / "frontend" / "build"
if frontend_path.exists():
app.mount("/", StaticFiles(directory=str(frontend_path), html=True), name="frontend")
@app.get("/", include_in_schema=False)
async def serve_frontend():
return FileResponse(str(frontend_path / "index.html"))
if __name__ == "__main__":
# Get the port from environment variable or use default
port = int(os.environ.get("PORT", 8000))
# For Hugging Face Spaces deployment
uvicorn.run(
"main:app",
host="0.0.0.0",
port=port,
proxy_headers=True, # This tells uvicorn to trust the X-Forwarded-* headers
forwarded_allow_ips="*" # Allow forwarded requests from any IP
) |