Spaces:
Runtime error
Runtime error
ai42
commited on
Commit
·
0102fad
1
Parent(s):
6d2e6dd
Update app.py
Browse files
app.py
CHANGED
@@ -1,444 +1,10 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
import
|
11 |
-
|
12 |
-
import torch
|
13 |
-
from docquery import pipeline
|
14 |
-
from docquery.document import load_document, ImageDocumenta
|
15 |
-
from docquery.ocr_reader import get_ocr_reader
|
16 |
-
|
17 |
-
|
18 |
-
def ensure_list(x):
|
19 |
-
if isinstance(x, list):
|
20 |
-
return x
|
21 |
-
else:
|
22 |
-
return [x]
|
23 |
-
|
24 |
-
|
25 |
-
CHECKPOINTS = {
|
26 |
-
"LayoutLMv1 🦉": "impira/layoutlm-document-qa",
|
27 |
-
"LayoutLMv1 for Invoices 💸": "impira/layoutlm-invoices",
|
28 |
-
"Donut 🍩": "naver-clova-ix/donut-base-finetuned-docvqa",
|
29 |
-
"ggml-Vicuna": "eachadea/ggml-vicuna-13b-1.1",
|
30 |
-
}
|
31 |
-
|
32 |
-
PIPELINES = {}
|
33 |
-
|
34 |
-
|
35 |
-
def construct_pipeline(task, model):
|
36 |
-
global PIPELINES
|
37 |
-
if model in PIPELINES:
|
38 |
-
return PIPELINES[model]
|
39 |
-
|
40 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
41 |
-
ret = pipeline(task=task, model=CHECKPOINTS[model], device=device)
|
42 |
-
PIPELINES[model] = ret
|
43 |
-
return ret
|
44 |
-
|
45 |
-
|
46 |
-
def run_pipeline(model, question, document, top_k):
|
47 |
-
pipeline = construct_pipeline("document-question-answering", model)
|
48 |
-
return pipeline(question=question, **document.context, top_k=top_k)
|
49 |
-
|
50 |
-
|
51 |
-
# TODO: Move into docquery
|
52 |
-
# TODO: Support words past the first page (or window?)
|
53 |
-
def lift_word_boxes(document, page):
|
54 |
-
return document.context["image"][page][1]
|
55 |
-
|
56 |
-
|
57 |
-
def expand_bbox(word_boxes):
|
58 |
-
if len(word_boxes) == 0:
|
59 |
-
return None
|
60 |
-
|
61 |
-
min_x, min_y, max_x, max_y = zip(*[x[1] for x in word_boxes])
|
62 |
-
min_x, min_y, max_x, max_y = [min(min_x), min(min_y), max(max_x), max(max_y)]
|
63 |
-
return [min_x, min_y, max_x, max_y]
|
64 |
-
|
65 |
-
|
66 |
-
# LayoutLM boxes are normalized to 0, 1000
|
67 |
-
def normalize_bbox(box, width, height, padding=0.005):
|
68 |
-
min_x, min_y, max_x, max_y = [c / 1000 for c in box]
|
69 |
-
if padding != 0:
|
70 |
-
min_x = max(0, min_x - padding)
|
71 |
-
min_y = max(0, min_y - padding)
|
72 |
-
max_x = min(max_x + padding, 1)
|
73 |
-
max_y = min(max_y + padding, 1)
|
74 |
-
return [min_x * width, min_y * height, max_x * width, max_y * height]
|
75 |
-
|
76 |
-
|
77 |
-
examples = [
|
78 |
-
[
|
79 |
-
"invoice.png",
|
80 |
-
"What is the invoice number?",
|
81 |
-
],
|
82 |
-
[
|
83 |
-
"contract.jpeg",
|
84 |
-
"What is the purchase amount?",
|
85 |
-
],
|
86 |
-
[
|
87 |
-
"statement.png",
|
88 |
-
"What are net sales for 2020?",
|
89 |
-
],
|
90 |
-
[
|
91 |
-
"SaleData.xlsx",
|
92 |
-
"What is the highest sale amount of televsion in east region?",
|
93 |
-
|
94 |
-
]
|
95 |
-
# [
|
96 |
-
# "docquery.png",
|
97 |
-
# "How many likes does the space have?",
|
98 |
-
# ],
|
99 |
-
# [
|
100 |
-
# "hacker_news.png",
|
101 |
-
# "What is the title of post number 5?",
|
102 |
-
# ],
|
103 |
-
]
|
104 |
-
|
105 |
-
question_files = {
|
106 |
-
"What are net sales for 2020?": "statement.pdf",
|
107 |
-
"How many likes does the space have?": "https://huggingface.co/spaces/impira/docquery",
|
108 |
-
"What is the title of post number 5?": "https://news.ycombinator.com",
|
109 |
-
}
|
110 |
-
|
111 |
-
|
112 |
-
def process_path(path):
|
113 |
-
error = None
|
114 |
-
if path:
|
115 |
-
try:
|
116 |
-
document = load_document(path)
|
117 |
-
return (
|
118 |
-
document,
|
119 |
-
gr.update(visible=True, value=document.preview),
|
120 |
-
gr.update(visible=True),
|
121 |
-
gr.update(visible=False, value=None),
|
122 |
-
gr.update(visible=False, value=None),
|
123 |
-
None,
|
124 |
-
)
|
125 |
-
except Exception as e:
|
126 |
-
traceback.print_exc()
|
127 |
-
error = str(e)
|
128 |
-
return (
|
129 |
-
None,
|
130 |
-
gr.update(visible=False, value=None),
|
131 |
-
gr.update(visible=False),
|
132 |
-
gr.update(visible=False, value=None),
|
133 |
-
gr.update(visible=False, value=None),
|
134 |
-
gr.update(visible=True, value=error) if error is not None else None,
|
135 |
-
None,
|
136 |
-
)
|
137 |
-
|
138 |
-
|
139 |
-
def process_upload(file, excel_file):
|
140 |
-
if file:
|
141 |
-
return process_path(file.name)
|
142 |
-
if excel_file:
|
143 |
-
excel_data = pd.read_excel(excel_file)
|
144 |
-
return process_path(excel_file.name)
|
145 |
-
else:
|
146 |
-
return (
|
147 |
-
None,
|
148 |
-
gr.update(visible=False, value=None),
|
149 |
-
gr.update(visible=False),
|
150 |
-
gr.update(visible=False, value=None),
|
151 |
-
gr.update(visible=False, value=None),
|
152 |
-
None,
|
153 |
-
)
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
colors = ["#64A087", "green", "black"]
|
161 |
-
|
162 |
-
|
163 |
-
def process_question(question, document, model=list(CHECKPOINTS.keys())[0]):
|
164 |
-
if not question or document is None:
|
165 |
-
return None, None, None
|
166 |
-
|
167 |
-
text_value = None
|
168 |
-
predictions = run_pipeline(model, question, document, 3)
|
169 |
-
pages = [x.copy().convert("RGB") for x in document.preview]
|
170 |
-
for i, p in enumerate(ensure_list(predictions)):
|
171 |
-
if i == 0:
|
172 |
-
text_value = p["answer"]
|
173 |
-
else:
|
174 |
-
# Keep the code around to produce multiple boxes, but only show the top
|
175 |
-
# prediction for now
|
176 |
-
break
|
177 |
-
|
178 |
-
if "word_ids" in p:
|
179 |
-
image = pages[p["page"]]
|
180 |
-
draw = ImageDraw.Draw(image, "RGBA")
|
181 |
-
word_boxes = lift_word_boxes(document, p["page"])
|
182 |
-
x1, y1, x2, y2 = normalize_bbox(
|
183 |
-
expand_bbox([word_boxes[i] for i in p["word_ids"]]),
|
184 |
-
image.width,
|
185 |
-
image.height,
|
186 |
-
)
|
187 |
-
draw.rectangle(((x1, y1), (x2, y2)), fill=(0, 255, 0, int(0.4 * 255)))
|
188 |
-
|
189 |
-
return (
|
190 |
-
gr.update(visible=True, value=pages),
|
191 |
-
gr.update(visible=True, value=predictions),
|
192 |
-
gr.update(
|
193 |
-
visible=True,
|
194 |
-
value=text_value,
|
195 |
-
),
|
196 |
-
)
|
197 |
-
|
198 |
-
|
199 |
-
def load_example_document(img, question, model):
|
200 |
-
if img is not None:
|
201 |
-
if question in question_files:
|
202 |
-
document = load_document(question_files[question])
|
203 |
-
else:
|
204 |
-
document = ImageDocument(Image.fromarray(img), get_ocr_reader())
|
205 |
-
preview, answer, answer_text = process_question(question, document, model)
|
206 |
-
return document, question, preview, gr.update(visible=True), answer, answer_text
|
207 |
-
else:
|
208 |
-
return None, None, None, gr.update(visible=False), None, None
|
209 |
-
|
210 |
-
|
211 |
-
CSS = """
|
212 |
-
#question input {
|
213 |
-
font-size: 16px;
|
214 |
-
}
|
215 |
-
#url-textbox {
|
216 |
-
padding: 0 !important;
|
217 |
-
}
|
218 |
-
#short-upload-box .w-full {
|
219 |
-
min-height: 10rem !important;
|
220 |
-
}
|
221 |
-
/* I think something like this can be used to re-shape
|
222 |
-
* the table
|
223 |
-
*/
|
224 |
-
/*
|
225 |
-
.gr-samples-table tr {
|
226 |
-
display: inline;
|
227 |
-
}
|
228 |
-
.gr-samples-table .p-2 {
|
229 |
-
width: 100px;
|
230 |
-
}
|
231 |
-
*/
|
232 |
-
#select-a-file {
|
233 |
-
width: 100%;
|
234 |
-
}
|
235 |
-
#file-clear {
|
236 |
-
padding-top: 2px !important;
|
237 |
-
padding-bottom: 2px !important;
|
238 |
-
padding-left: 8px !important;
|
239 |
-
padding-right: 8px !important;
|
240 |
-
margin-top: 10px;
|
241 |
-
}
|
242 |
-
.gradio-container .gr-button-primary {
|
243 |
-
background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%);
|
244 |
-
border: 1px solid #B0DCCC;
|
245 |
-
border-radius: 8px;
|
246 |
-
color: #1B8700;
|
247 |
-
}
|
248 |
-
.gradio-container.dark button#submit-button {
|
249 |
-
background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%);
|
250 |
-
border: 1px solid #B0DCCC;
|
251 |
-
border-radius: 8px;
|
252 |
-
color: #1B8700
|
253 |
-
}
|
254 |
-
|
255 |
-
table.gr-samples-table tr td {
|
256 |
-
border: none;
|
257 |
-
outline: none;
|
258 |
-
}
|
259 |
-
|
260 |
-
table.gr-samples-table tr td:first-of-type {
|
261 |
-
width: 0%;
|
262 |
-
}
|
263 |
-
|
264 |
-
div#short-upload-box div.absolute {
|
265 |
-
display: none !important;
|
266 |
-
}
|
267 |
-
|
268 |
-
gradio-app > div > div > div > div.w-full > div, .gradio-app > div > div > div > div.w-full > div {
|
269 |
-
gap: 0px 2%;
|
270 |
-
}
|
271 |
-
|
272 |
-
gradio-app div div div div.w-full, .gradio-app div div div div.w-full {
|
273 |
-
gap: 0px;
|
274 |
-
}
|
275 |
-
|
276 |
-
gradio-app h2, .gradio-app h2 {
|
277 |
-
padding-top: 10px;
|
278 |
-
}
|
279 |
-
|
280 |
-
#answer {
|
281 |
-
overflow-y: scroll;
|
282 |
-
color: white;
|
283 |
-
background: #666;
|
284 |
-
border-color: #666;
|
285 |
-
font-size: 20px;
|
286 |
-
font-weight: bold;
|
287 |
-
}
|
288 |
-
|
289 |
-
#answer span {
|
290 |
-
color: white;
|
291 |
-
}
|
292 |
-
|
293 |
-
#answer textarea {
|
294 |
-
color:white;
|
295 |
-
background: #777;
|
296 |
-
border-color: #777;
|
297 |
-
font-size: 18px;
|
298 |
-
}
|
299 |
-
|
300 |
-
#url-error input {
|
301 |
-
color: red;
|
302 |
-
}
|
303 |
-
"""
|
304 |
-
|
305 |
-
with gr.Blocks(css=CSS) as demo:
|
306 |
-
gr.Markdown("# Document Query Engine")
|
307 |
-
|
308 |
-
|
309 |
-
document = gr.Variable()
|
310 |
-
example_question = gr.Textbox(visible=False)
|
311 |
-
example_image = gr.Image(visible=False)
|
312 |
-
excel_upload = gr.File(label="Upload Excel", type="xlsx", elem_id="excel-upload-box")
|
313 |
-
|
314 |
-
excel_process_button = gr.Button("Process Excel", variant="primary", elem_id="excel-process-button")
|
315 |
-
|
316 |
-
with gr.Row(equal_height=True):
|
317 |
-
with gr.Column():
|
318 |
-
with gr.Row():
|
319 |
-
gr.Markdown("## 1. Select a file", elem_id="select-a-file")
|
320 |
-
img_clear_button = gr.Button(
|
321 |
-
"Clear", variant="secondary", elem_id="file-clear", visible=False
|
322 |
-
)
|
323 |
-
image = gr.Gallery(visible=False)
|
324 |
-
with gr.Row(equal_height=True):
|
325 |
-
with gr.Column():
|
326 |
-
with gr.Row():
|
327 |
-
url = gr.Textbox(
|
328 |
-
show_label=False,
|
329 |
-
placeholder="URL",
|
330 |
-
lines=1,
|
331 |
-
max_lines=1,
|
332 |
-
elem_id="url-textbox",
|
333 |
-
)
|
334 |
-
submit = gr.Button("Get")
|
335 |
-
url_error = gr.Textbox(
|
336 |
-
visible=False,
|
337 |
-
elem_id="url-error",
|
338 |
-
max_lines=1,
|
339 |
-
interactive=False,
|
340 |
-
label="Error",
|
341 |
-
)
|
342 |
-
gr.Markdown("— or —")
|
343 |
-
upload = gr.File(label=None, interactive=True, elem_id="short-upload-box")
|
344 |
-
gr.Examples(
|
345 |
-
examples=examples,
|
346 |
-
inputs=[example_image, example_question],
|
347 |
-
)
|
348 |
-
|
349 |
-
with gr.Column() as col:
|
350 |
-
gr.Markdown("## 2. Ask a question")
|
351 |
-
question = gr.Textbox(
|
352 |
-
label="Question",
|
353 |
-
placeholder="e.g. What is the invoice number?",
|
354 |
-
lines=1,
|
355 |
-
max_lines=1,
|
356 |
-
)
|
357 |
-
model = gr.Radio(
|
358 |
-
choices=list(CHECKPOINTS.keys()),
|
359 |
-
value=list(CHECKPOINTS.keys())[0],
|
360 |
-
label="Model",
|
361 |
-
)
|
362 |
-
|
363 |
-
with gr.Row():
|
364 |
-
clear_button = gr.Button("Clear", variant="secondary")
|
365 |
-
submit_button = gr.Button(
|
366 |
-
"Submit", variant="primary", elem_id="submit-button"
|
367 |
-
)
|
368 |
-
with gr.Column():
|
369 |
-
output_text = gr.Textbox(
|
370 |
-
label="Top Answer", visible=False, elem_id="answer"
|
371 |
-
)
|
372 |
-
output = gr.JSON(label="Output", visible=False)
|
373 |
-
|
374 |
-
for cb in [img_clear_button, clear_button]:
|
375 |
-
cb.click(
|
376 |
-
lambda _: (
|
377 |
-
gr.update(visible=False, value=None),
|
378 |
-
None,
|
379 |
-
gr.update(visible=False, value=None),
|
380 |
-
gr.update(visible=False, value=None),
|
381 |
-
gr.update(visible=False),
|
382 |
-
None,
|
383 |
-
None,
|
384 |
-
None,
|
385 |
-
gr.update(visible=False, value=None),
|
386 |
-
None,
|
387 |
-
),
|
388 |
-
inputs=clear_button,
|
389 |
-
outputs=[
|
390 |
-
image,
|
391 |
-
document,
|
392 |
-
output,
|
393 |
-
output_text,
|
394 |
-
img_clear_button,
|
395 |
-
example_image,
|
396 |
-
upload,
|
397 |
-
url,
|
398 |
-
url_error,
|
399 |
-
question,
|
400 |
-
],
|
401 |
-
)
|
402 |
-
|
403 |
-
upload.change(
|
404 |
-
fn=process_upload,
|
405 |
-
inputs=[upload],
|
406 |
-
outputs=[document, image, img_clear_button, output, output_text, url_error],
|
407 |
-
)
|
408 |
-
submit.click(
|
409 |
-
fn=process_path,
|
410 |
-
inputs=[url],
|
411 |
-
outputs=[document, image, img_clear_button, output, output_text, url_error],
|
412 |
-
)
|
413 |
-
|
414 |
-
question.submit(
|
415 |
-
fn=process_question,
|
416 |
-
inputs=[question, document, model],
|
417 |
-
outputs=[image, output, output_text],
|
418 |
-
)
|
419 |
-
|
420 |
-
submit_button.click(
|
421 |
-
process_question,
|
422 |
-
inputs=[question, document, model],
|
423 |
-
outputs=[image, output, output_text],
|
424 |
-
)
|
425 |
-
|
426 |
-
model.change(
|
427 |
-
process_question,
|
428 |
-
inputs=[question, document, model],
|
429 |
-
outputs=[image, output, output_text],
|
430 |
-
)
|
431 |
-
|
432 |
-
example_image.change(
|
433 |
-
fn=load_example_document,
|
434 |
-
inputs=[example_image, example_question, model],
|
435 |
-
outputs=[document, question, image, img_clear_button, output, output_text],
|
436 |
-
)
|
437 |
-
upload.change(
|
438 |
-
fn=process_upload,
|
439 |
-
inputs=[upload, excel_upload],
|
440 |
-
outputs=[document, image_preview, img_clear_button, output, output_text, url_error],
|
441 |
-
)
|
442 |
-
|
443 |
-
if __name__ == "__main__":
|
444 |
-
demo.launch(enable_queue=False)
|
|
|
1 |
+
The cache for model files in Transformers v4.22.0 has been updated. Migrating your old cache. This is a one-time only operation. You can interrupt this and resume the migration later on by calling `transformers.utils.move_cache()`.
|
2 |
+
Moving 0 files to the new cache system
|
3 |
+
|
4 |
+
0it [00:00, ?it/s]
|
5 |
+
0it [00:00, ?it/s]
|
6 |
+
image-classification is already registered. Overwriting pipeline for task image-classification...
|
7 |
+
Traceback (most recent call last):
|
8 |
+
File "/home/user/app/app.py", line 14, in <module>
|
9 |
+
from docquery.document import load_document, ImageDocumenta
|
10 |
+
ImportError: cannot import name 'ImageDocumenta' from 'docquery.document' (/home/user/.local/lib/python3.10/site-packages/docquery/document.py)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|