Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -26,10 +26,18 @@ from langchain.chat_models import ChatOpenAI
|
|
26 |
from langchain.document_loaders import PyPDFLoader
|
27 |
from langchain.chains.question_answering import load_qa_chain
|
28 |
|
|
|
|
|
|
|
|
|
|
|
29 |
# turned off due to people using it unethical ways
|
30 |
openai.api_key = os.environ['openai_key']
|
31 |
os.environ["OPENAI_API_KEY"] = os.environ['openai_key']
|
32 |
|
|
|
|
|
|
|
33 |
|
34 |
prompt_templates = {"All Needs Experts": "Respond as if you are combination of all needs assessment experts."}
|
35 |
actor_description = {"All Needs Experts": "<div style='float: left;margin: 0px 5px 0px 5px;'><img src='https://na.weshareresearch.com/wp-content/uploads/2023/04/experts2.jpg' alt='needs expert image' style='width:70px;align:top;'></div>A combiation of all needs assessment experts."}
|
@@ -86,6 +94,7 @@ def on_prompt_template_change_description(prompt_template):
|
|
86 |
|
87 |
|
88 |
|
|
|
89 |
def submit_message(prompt, prompt_template, temperature, max_tokens, context_length, state):
|
90 |
|
91 |
|
@@ -102,6 +111,79 @@ def submit_message(prompt, prompt_template, temperature, max_tokens, context_len
|
|
102 |
{"prompt": str(prompt), "time": str(datetime.now())}
|
103 |
)
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
# with open(prompts_archive_file, "a") as csvfile:
|
106 |
# writer = csv.DictWriter(csvfile, fieldnames=["prompt", "time"])
|
107 |
# writer.writerow(
|
|
|
26 |
from langchain.document_loaders import PyPDFLoader
|
27 |
from langchain.chains.question_answering import load_qa_chain
|
28 |
|
29 |
+
import generativeai as gen
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
# turned off due to people using it unethical ways
|
35 |
openai.api_key = os.environ['openai_key']
|
36 |
os.environ["OPENAI_API_KEY"] = os.environ['openai_key']
|
37 |
|
38 |
+
gemini.api_key = os.environ['gemini_key']
|
39 |
+
os.environ["GEMINI_API_KEY"] = os.environ['gemini_key']
|
40 |
+
|
41 |
|
42 |
prompt_templates = {"All Needs Experts": "Respond as if you are combination of all needs assessment experts."}
|
43 |
actor_description = {"All Needs Experts": "<div style='float: left;margin: 0px 5px 0px 5px;'><img src='https://na.weshareresearch.com/wp-content/uploads/2023/04/experts2.jpg' alt='needs expert image' style='width:70px;align:top;'></div>A combiation of all needs assessment experts."}
|
|
|
94 |
|
95 |
|
96 |
|
97 |
+
|
98 |
def submit_message(prompt, prompt_template, temperature, max_tokens, context_length, state):
|
99 |
|
100 |
|
|
|
111 |
{"prompt": str(prompt), "time": str(datetime.now())}
|
112 |
)
|
113 |
|
114 |
+
|
115 |
+
system_prompt = []
|
116 |
+
if prompt_template:
|
117 |
+
system_prompt = [{ "role": "system", "content": prompt_template }]
|
118 |
+
|
119 |
+
prompt_msg = { "role": "user", "content": prompt }
|
120 |
+
|
121 |
+
|
122 |
+
#try:
|
123 |
+
|
124 |
+
with open("embeddings.pkl", 'rb') as f:
|
125 |
+
new_docsearch = pickle.load(f)
|
126 |
+
|
127 |
+
|
128 |
+
query = str(system_prompt + history + [prompt_msg])
|
129 |
+
|
130 |
+
docs = new_docsearch.similarity_search(query)
|
131 |
+
|
132 |
+
gen_ai = GenerativeAI.get_client(model="gemini-1.0-pro")
|
133 |
+
response = gen_ai.start_chat(
|
134 |
+
messages=query, # Pass both history and current prompt
|
135 |
+
max_tokens=max_tokens,
|
136 |
+
temperature=temperature # Adjust temperature as needed
|
137 |
+
)
|
138 |
+
|
139 |
+
completion = response.messages[-1] # Extract the completion message
|
140 |
+
|
141 |
+
|
142 |
+
get_empty_state()
|
143 |
+
state['content'] = completion
|
144 |
+
#state.append(completion.copy())
|
145 |
+
|
146 |
+
completion = { "content": completion }
|
147 |
+
|
148 |
+
|
149 |
+
#state['total_tokens'] += completion['usage']['total_tokens']
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
+
#except Exception as e:
|
154 |
+
# history.append(prompt_msg.copy())
|
155 |
+
# error = {
|
156 |
+
# "role": "system",
|
157 |
+
# "content": f"Error: {e}"
|
158 |
+
# }
|
159 |
+
# history.append(error.copy())
|
160 |
+
|
161 |
+
#total_tokens_used_msg = f"Total tokens used: {state['total_tokens']}"
|
162 |
+
|
163 |
+
chat_messages = [(prompt_msg['content'], completion['content'])]
|
164 |
+
return '', chat_messages, state # total_tokens_used_msg,
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
def submit_message_OLD(prompt, prompt_template, temperature, max_tokens, context_length, state):
|
172 |
+
|
173 |
+
|
174 |
+
history = state['messages']
|
175 |
+
|
176 |
+
if not prompt:
|
177 |
+
return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], state
|
178 |
+
|
179 |
+
prompt_template = prompt_templates[prompt_template]
|
180 |
+
|
181 |
+
with open("prompts_archive.csv", "a") as csvfile:
|
182 |
+
writer = csv.DictWriter(csvfile, fieldnames=["prompt", "time"])
|
183 |
+
writer.writerow(
|
184 |
+
{"prompt": str(prompt), "time": str(datetime.now())}
|
185 |
+
)
|
186 |
+
|
187 |
# with open(prompts_archive_file, "a") as csvfile:
|
188 |
# writer = csv.DictWriter(csvfile, fieldnames=["prompt", "time"])
|
189 |
# writer.writerow(
|