Spaces:
Running
Running
File size: 10,462 Bytes
8af6af2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Login to HuggingFace (just login once)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from huggingface_hub import interpreter_login\n",
"interpreter_login()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Collect Menu Image Datasets\n",
"- Use `metadata.jsonl` to label the images's ground truth. You can visit [here](https://github.com/ryanlinjui/menu-text-detection/tree/main/examples) to see the examples.\n",
"- After finishing, push to HuggingFace Datasets.\n",
"- For labeling:\n",
" - [Google AI Studio](https://aistudio.google.com) or [OpenAI ChatGPT](https://chatgpt.com).\n",
" - Use function calling by API. Start the gradio app locally or visit [here](https://huggingface.co/spaces/ryanlinjui/menu-text-detection).\n",
"\n",
"### Menu Type\n",
"- **h**: horizontal menu\n",
"- **v**: vertical menu\n",
"- **d**: document-style menu\n",
"- **s**: in-scene menu (non-document style)\n",
"- **i**: irregular menu (menu with irregular text layout)\n",
"\n",
"> Please see the [examples](https://github.com/ryanlinjui/menu-text-detection/tree/main/examples) for more details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"\n",
"dataset = load_dataset(path=\"datasets/menu-zh-TW\") # load dataset from the local directory including the metadata.jsonl, images files.\n",
"dataset.push_to_hub(repo_id=\"ryanlinjui/menu-zh-TW\") # push to the huggingface dataset hub"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup for Fine-tuning"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"from transformers import DonutProcessor, VisionEncoderDecoderModel, VisionEncoderDecoderConfig\n",
"\n",
"from menu.donut import DonutDatasets\n",
"\n",
"DATASETS_REPO_ID = \"ryanlinjui/menu-zh-TW\" # set your dataset repo id for training\n",
"PRETRAINED_MODEL_REPO_ID = \"naver-clova-ix/donut-base\" # set your pretrained model repo id for fine-tuning\n",
"TASK_PROMPT_NAME = \"<s_menu>\" # set your task prompt name for training\n",
"MAX_LENGTH = 768 # set your max length for maximum output length\n",
"IMAGE_SIZE = [1280, 960] # set your image size for training\n",
"\n",
"raw_datasets = load_dataset(DATASETS_REPO_ID)\n",
"\n",
"# Config: set the model config\n",
"config = VisionEncoderDecoderConfig.from_pretrained(PRETRAINED_MODEL_REPO_ID)\n",
"config.encoder.image_size = IMAGE_SIZE\n",
"config.decoder.max_length = MAX_LENGTH\n",
"\n",
"# Processor: use the processor to process the dataset. \n",
"# Convert the image to the tensor and the text to the token ids.\n",
"processor = DonutProcessor.from_pretrained(PRETRAINED_MODEL_REPO_ID)\n",
"processor.feature_extractor.size = IMAGE_SIZE[::-1]\n",
"processor.feature_extractor.do_align_long_axis = False\n",
"\n",
"# DonutDatasets: use the DonutDatasets to process the dataset.\n",
"# For model inpit, the image must be converted to the tensor and the json text must be converted to the token with the task prompt string.\n",
"# This example sets the column name by \"image\" and \"menu\". So that image file is included in the \"image\" column and the json text is included in the \"menu\" column.\n",
"datasets = DonutDatasets(\n",
" datasets=raw_datasets,\n",
" processor=processor,\n",
" image_column=\"image\",\n",
" annotation_column=\"menu\",\n",
" task_start_token=TASK_PROMPT_NAME,\n",
" prompt_end_token=TASK_PROMPT_NAME,\n",
" train_split=0.8,\n",
" validation_split=0.1,\n",
" test_split=0.1,\n",
" sort_json_key=True,\n",
" seed=42\n",
")\n",
"\n",
"# Model: load the pretrained model and set the config.\n",
"model = VisionEncoderDecoderModel.from_pretrained(PRETRAINED_MODEL_REPO_ID, config=config)\n",
"model.decoder.resize_token_embeddings(len(processor.tokenizer))\n",
"model.config.pad_token_id = processor.tokenizer.pad_token_id\n",
"model.config.decoder_start_token_id = processor.tokenizer.convert_tokens_to_ids([TASK_PROMPT_NAME])[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Start Fine-tuning"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments\n",
"\n",
"HUGGINGFACE_MODEL_ID = \"ryanlinjui/donut-base-finetuned-menu\" # set your huggingface model repo id for saving / pushing to the hub\n",
"EPOCHS = 100 # set your training epochs\n",
"TRAIN_BATCH_SIZE = 4 # set your training batch size\n",
"\n",
"device = (\n",
" \"cuda\"\n",
" if torch.cuda.is_available()\n",
" else \"mps\" if torch.backends.mps.is_available() else \"cpu\"\n",
")\n",
"print(f\"Using {device} device\")\n",
"model.to(device)\n",
"\n",
"training_args = Seq2SeqTrainingArguments(\n",
" num_train_epochs=EPOCHS,\n",
" per_device_train_batch_size=TRAIN_BATCH_SIZE,\n",
" learning_rate=3e-5,\n",
" per_device_eval_batch_size=1,\n",
" output_dir=\"./.checkpoints\",\n",
" seed=2022,\n",
" warmup_steps=30,\n",
" eval_strategy=\"steps\",\n",
" eval_steps=100,\n",
" logging_strategy=\"steps\",\n",
" logging_steps=50,\n",
" save_strategy=\"steps\",\n",
" save_steps=200,\n",
" push_to_hub=True if HUGGINGFACE_MODEL_ID else False,\n",
" hub_model_id=HUGGINGFACE_MODEL_ID,\n",
" hub_strategy=\"every_save\",\n",
" report_to=\"tensorboard\",\n",
" logging_dir=\"./.checkpoints/logs\",\n",
")\n",
"trainer = Seq2SeqTrainer(\n",
" model=model,\n",
" args=training_args,\n",
" train_dataset=datasets[\"train\"],\n",
" eval_dataset=datasets[\"test\"],\n",
" tokenizer=processor\n",
")\n",
"\n",
"trainer.train()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import (\n",
" VisionEncoderDecoderModel,\n",
" DonutProcessor,\n",
" pipeline\n",
")\n",
"from PIL import Image\n",
"\n",
"model_id = \"ryanlinjui/donut-base-finetuned-menu\"\n",
"\n",
"# 1. 下載並載入 model + processor\n",
"processor = DonutProcessor.from_pretrained(model_id)\n",
"model = VisionEncoderDecoderModel.from_pretrained(model_id)\n",
"\n",
"# 2. 建立一個 image-to-text pipeline\n",
"ocr_pipeline = pipeline(\n",
" \"image-to-text\", # 使用 image-to-text 任務\n",
" model=model, # 傳入已載入的 model\n",
" tokenizer=processor.tokenizer,\n",
" feature_extractor=processor.feature_extractor,\n",
")\n",
"\n",
"# 3. 載入一張測試圖片\n",
"image = Image.open(\"./examples/menu-hd.jpg\")\n",
"\n",
"# 4. 呼叫 pipeline,取得結果\n",
"outputs = ocr_pipeline(image)\n",
"\n",
"# 5. 印出辨識文字\n",
"print(outputs[0][\"generated_text\"])\n",
"\n",
"'''\n",
"# test model\n",
"import re\n",
"\n",
"from transformers import VisionEncoderDecoderModel\n",
"from transformers import DonutProcessor\n",
"import torch\n",
"from PIL import Image\n",
"\n",
"image = Image.open(\"./examples/menu-hd.jpg\").convert(\"RGB\")\n",
"\n",
"processor = DonutProcessor.from_pretrained(\"ryanlinjui/donut-base-finetuned-menu\")\n",
"model = VisionEncoderDecoderModel.from_pretrained(\"ryanlinjui/donut-base-finetuned-menu\")\n",
"device = \"cuda\" if torch.cuda.is_available() else \"mps\"\n",
"\n",
"model.eval()\n",
"model.to(device)\n",
"\n",
"pixel_values = processor(image, return_tensors=\"pt\").pixel_values\n",
"pixel_values = pixel_values.to(device)\n",
"\n",
"task_prompt = \"<s_menu>\"\n",
"decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors=\"pt\").input_ids\n",
"decoder_input_ids = decoder_input_ids.to(device)\n",
"outputs = model.generate(\n",
" pixel_values,\n",
" decoder_input_ids=decoder_input_ids,\n",
" max_length=model.decoder.config.max_position_embeddings,\n",
" early_stopping=True,\n",
" pad_token_id=processor.tokenizer.pad_token_id,\n",
" eos_token_id=processor.tokenizer.eos_token_id,\n",
" use_cache=True,\n",
" num_beams=1,\n",
" bad_words_ids=[[processor.tokenizer.unk_token_id]],\n",
" return_dict_in_generate=True,\n",
")\n",
"\n",
"seq = processor.batch_decode(outputs.sequences)[0]\n",
"seq = seq.replace(processor.tokenizer.eos_token, \"\").replace(processor.tokenizer.pad_token, \"\")\n",
"# seq = re.sub(r\"<.*?>\", \"\", seq, count=1).strip() # remove first task start token\n",
"seq = processor.token2json(seq)\n",
"print(seq)\n",
"'''\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Plot the results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Training Loss\n",
"# Validation Normal ED per each epoch 1~0, 1 -> 0.22\n",
"# Test Accuracy TED Accuracy, F1 Score Accuracy 0.687058, 0.51119 "
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|