DropChain / app.py
rwayz's picture
Update app.py
aa1f8c6
raw
history blame
9.33 kB
import os
import time
import pandas as pd
from sqlalchemy import create_engine
from langchain_openai import ChatOpenAI
from langchain_community.agent_toolkits import create_sql_agent
from langchain_community.utilities import SQLDatabase
from huggingface_hub import InferenceClient
import gradio as gr
from dotenv import load_dotenv
import logging
load_dotenv()
UPLOAD_DIR = "uploaded_data"
os.makedirs(UPLOAD_DIR, exist_ok=True)
CSV_FILE_PATH = "anomalia_vendas.csv"
SQL_DB_PATH = "data.db"
HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
LLAMA_MODELS = {
"LLaMA 70B": "meta-llama/Llama-3.3-70B-Instruct",
"LlaMA 8B": "meta-llama/Llama-3.1-8B-Instruct",
"Qwen 32B": "Qwen/QwQ-32B"
}
MAX_TOKENS_MAP = {
"meta-llama/Llama-3.3-70B-Instruct": 900,
"meta-llama/Llama-3.1-8B-Instruct": 600,
"Qwen/QwQ-32B": 8192
}
hf_client = InferenceClient(
provider="sambanova",
api_key=HUGGINGFACE_API_KEY,
)
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
query_cache = {}
history_log = []
recent_history = []
show_history_flag = False
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def create_or_load_sql_database(csv_path, sql_db_path):
if os.path.exists(sql_db_path):
print("Banco de dados SQL já existe. Carregando...")
return create_engine(f"sqlite:///{sql_db_path}")
else:
print("Banco de dados SQL não encontrado. Criando...")
engine = create_engine(f"sqlite:///{sql_db_path}")
df = pd.read_csv(csv_path, sep=";", on_bad_lines="skip")
print(f"CSV carregado: {len(df)} linhas, {len(df.columns)} colunas")
df.to_sql("anomalia_vendas", engine, index=False, if_exists="replace")
print("Banco de dados SQL criado com sucesso!")
return engine
def load_uploaded_csv_and_create_db(uploaded_file):
if uploaded_file is None:
return None
print(f"[UPLOAD] CSV recebido: {uploaded_file}")
engine = create_engine(f"sqlite:///{SQL_DB_PATH}")
df = pd.read_csv(uploaded_file, sep=";", on_bad_lines="skip")
df.to_sql("anomalia_vendas", engine, index=False, if_exists="replace")
print("Banco recriado com base no novo CSV.")
print(f"CSV carregado: {len(df)} linhas, {len(df.columns)} colunas")
print(f"[DEBUG] Novo engine criado: {engine}")
return engine
engine = create_or_load_sql_database(CSV_FILE_PATH, SQL_DB_PATH)
db = SQLDatabase(engine=engine)
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
sql_agent = create_sql_agent(llm, db=db, agent_type="openai-tools", verbose=True, max_iterations=40, return_intermediate_steps=True)
def generate_initial_context(db_sample):
return (
f"Você é um assistente que gera queries SQL objetivas e eficientes. Sempre inclua LIMIT 15 nas queries. Aqui está o banco de dados:\n\n"
f"Exemplos do banco de dados:\n{db_sample.head().to_string(index=False)}\n\n"
"\n***IMPORTANTE***: Detecte automaticamente o idioma da pergunta do usuário e responda sempre no mesmo idioma.\n"
"Essa base de dados representa o sellout de 2025, janeiro, fevereiro e março até dia 11, de uma farmácia.\n"
"Cada linha representa a venda de um SKU em uma determinada data.\n"
"\nRetorne apenas a pergunta e a query SQL mais eficiente para entregar ao agent SQL do LangChain para gerar uma resposta. O formato deve ser:\n"
"\nPergunta: <pergunta do usuário>\n"
"\nOpção de Query SQL:\n<query SQL>"
"\nIdioma: <idioma>"
)
def is_greeting(user_query):
greetings = ["olá", "oi", "bom dia", "boa tarde", "boa noite", "oi, tudo bem?"]
return user_query.lower().strip() in greetings
def query_with_llama(user_query, db_sample, selected_model_name):
model_id = LLAMA_MODELS[selected_model_name]
max_tokens = MAX_TOKENS_MAP.get(model_id, 512)
initial_context = generate_initial_context(db_sample)
formatted_history = "\n".join(
[f"{msg['role'].capitalize()}: {msg['content']}" for msg in recent_history[-2:]]
)
full_prompt = f"{initial_context}\n\nHistórico recente:\n{formatted_history}\n\nPergunta do usuário:\n{user_query}"
logging.info(f"[DEBUG] Contexto enviado ao ({selected_model_name}):\n{full_prompt}\n")
start_time = time.time()
try:
response = hf_client.chat.completions.create(
model=model_id,
messages=[{"role": "system", "content": full_prompt}],
max_tokens=max_tokens,
stream=False
)
llama_response = response["choices"][0]["message"]["content"]
end_time = time.time()
logging.info(f"[DEBUG] Resposta do {selected_model_name} para o Agent SQL:\n{llama_response.strip()}\n[Tempo de execução: {end_time - start_time:.2f}s]\n")
return llama_response.strip(), model_id
except Exception as e:
logging.error(f"[ERRO] Falha ao interagir com o modelo {selected_model_name}: {e}")
return None, model_id
def query_sql_agent(user_query, selected_model_name):
try:
if user_query in query_cache:
print(f"[CACHE] Retornando resposta do cache para a consulta: {user_query}")
return query_cache[user_query]
if is_greeting(user_query):
greeting_response = "Olá! Estou aqui para ajudar com suas consultas. Pergunte algo relacionado aos dados carregados no agente!"
query_cache[user_query] = greeting_response
return greeting_response
column_data = pd.read_sql_query("SELECT * FROM anomalia_vendas LIMIT 10", engine)
llama_instruction = query_with_llama(user_query, column_data, selected_model_name)
if not llama_instruction:
return "Erro: O modelo Llama não conseguiu gerar uma instrução válida."
print("------- Agent SQL: Executando query -------")
response = sql_agent.invoke({"input": llama_instruction})
sql_response = response.get("output", "Erro ao obter a resposta do agente.")
query_cache[user_query] = sql_response
return sql_response
except Exception as e:
return f"Erro ao consultar o agente SQL: {e}"
def chatbot_response(user_input, selected_model_name):
start_time = time.time()
response = query_sql_agent(user_input, selected_model_name)
end_time = time.time()
model_id = LLAMA_MODELS[selected_model_name]
history_log.append({
"Modelo LLM": model_id,
"Pergunta": user_input,
"Resposta": response,
"Tempo de Resposta (s)": round(end_time - start_time, 2)
})
recent_history.append({"role": "user", "content": user_input})
recent_history.append({"role": "assistant", "content": response})
if len(recent_history) > 4:
recent_history.pop(0)
recent_history.pop(0)
return response
def toggle_history():
global show_history_flag
show_history_flag = not show_history_flag
return history_log if show_history_flag else {}
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🧠 Anomalia Agent")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## ⚙️ Configurações")
model_selector = gr.Dropdown(
choices=list(LLAMA_MODELS.keys()),
label="Escolha o Modelo LLM para gerar a query SQL",
value="LLaMA 70B"
)
csv_file = gr.File(label="📂 Enviar novo CSV", file_types=[".csv"])
with gr.Column(scale=4):
chatbot = gr.Chatbot(height=600)
msg = gr.Textbox(placeholder="Digite sua pergunta aqui...", label=" ", lines=1)
btn = gr.Button("Enviar", variant="primary")
history_btn = gr.Button("Histórico", variant="secondary")
def respond(message, chat_history, selected_model_name):
response = chatbot_response(message, selected_model_name)
chat_history.append((message, response))
return "", chat_history
msg.submit(respond, [msg, chatbot, model_selector], [msg, chatbot])
btn.click(respond, [msg, chatbot, model_selector], [msg, chatbot])
history_output = gr.JSON()
history_btn.click(toggle_history, inputs=[], outputs=history_output)
def handle_csv_upload(file):
global engine, db, sql_agent
try:
engine = load_uploaded_csv_and_create_db(file)
if engine is not None:
db = SQLDatabase(engine=engine)
sql_agent = create_sql_agent(
ChatOpenAI(model="gpt-4o-mini", temperature=0),
db=db,
agent_type="openai-tools",
verbose=True,
max_iterations=40,
return_intermediate_steps=True
)
print("[UPLOAD] Banco e agente SQL atualizados com sucesso.")
except Exception as e:
print(f"[ERRO] Falha ao processar novo CSV: {e}")
csv_file.change(handle_csv_upload, inputs=csv_file, outputs=csv_file)
if __name__ == "__main__":
demo.launch(share=False)