|
import os |
|
import time |
|
import pandas as pd |
|
from sqlalchemy import create_engine |
|
from langchain_openai import ChatOpenAI |
|
from langchain_community.agent_toolkits import create_sql_agent |
|
from langchain_community.utilities import SQLDatabase |
|
from huggingface_hub import InferenceClient |
|
import gradio as gr |
|
from dotenv import load_dotenv |
|
import logging |
|
|
|
load_dotenv() |
|
|
|
UPLOAD_DIR = "uploaded_data" |
|
os.makedirs(UPLOAD_DIR, exist_ok=True) |
|
|
|
CSV_FILE_PATH = "anomalia_vendas.csv" |
|
SQL_DB_PATH = "data.db" |
|
HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY") |
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
|
|
LLAMA_MODELS = { |
|
"LLaMA 70B": "meta-llama/Llama-3.3-70B-Instruct", |
|
"LlaMA 8B": "meta-llama/Llama-3.1-8B-Instruct", |
|
"Qwen 32B": "Qwen/QwQ-32B" |
|
} |
|
|
|
MAX_TOKENS_MAP = { |
|
"meta-llama/Llama-3.3-70B-Instruct": 900, |
|
"meta-llama/Llama-3.1-8B-Instruct": 600, |
|
"Qwen/QwQ-32B": 8192 |
|
} |
|
|
|
hf_client = InferenceClient( |
|
provider="sambanova", |
|
api_key=HUGGINGFACE_API_KEY, |
|
) |
|
|
|
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY |
|
|
|
query_cache = {} |
|
history_log = [] |
|
recent_history = [] |
|
show_history_flag = False |
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
|
|
|
def create_or_load_sql_database(csv_path, sql_db_path): |
|
if os.path.exists(sql_db_path): |
|
print("Banco de dados SQL já existe. Carregando...") |
|
return create_engine(f"sqlite:///{sql_db_path}") |
|
else: |
|
print("Banco de dados SQL não encontrado. Criando...") |
|
engine = create_engine(f"sqlite:///{sql_db_path}") |
|
df = pd.read_csv(csv_path, sep=";", on_bad_lines="skip") |
|
print(f"CSV carregado: {len(df)} linhas, {len(df.columns)} colunas") |
|
df.to_sql("anomalia_vendas", engine, index=False, if_exists="replace") |
|
print("Banco de dados SQL criado com sucesso!") |
|
return engine |
|
|
|
def load_uploaded_csv_and_create_db(uploaded_file): |
|
if uploaded_file is None: |
|
return None |
|
|
|
print(f"[UPLOAD] CSV recebido: {uploaded_file}") |
|
|
|
engine = create_engine(f"sqlite:///{SQL_DB_PATH}") |
|
df = pd.read_csv(uploaded_file, sep=";", on_bad_lines="skip") |
|
df.to_sql("anomalia_vendas", engine, index=False, if_exists="replace") |
|
print("Banco recriado com base no novo CSV.") |
|
print(f"CSV carregado: {len(df)} linhas, {len(df.columns)} colunas") |
|
print(f"[DEBUG] Novo engine criado: {engine}") |
|
return engine |
|
|
|
engine = create_or_load_sql_database(CSV_FILE_PATH, SQL_DB_PATH) |
|
db = SQLDatabase(engine=engine) |
|
|
|
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0) |
|
sql_agent = create_sql_agent(llm, db=db, agent_type="openai-tools", verbose=True, max_iterations=40, return_intermediate_steps=True) |
|
|
|
def generate_initial_context(db_sample): |
|
return ( |
|
f"Você é um assistente que gera queries SQL objetivas e eficientes. Sempre inclua LIMIT 15 nas queries. Aqui está o banco de dados:\n\n" |
|
f"Exemplos do banco de dados:\n{db_sample.head().to_string(index=False)}\n\n" |
|
"\n***IMPORTANTE***: Detecte automaticamente o idioma da pergunta do usuário e responda sempre no mesmo idioma.\n" |
|
"Essa base de dados representa o sellout de 2025, janeiro, fevereiro e março até dia 11, de uma farmácia.\n" |
|
"Cada linha representa a venda de um SKU em uma determinada data.\n" |
|
"\nRetorne apenas a pergunta e a query SQL mais eficiente para entregar ao agent SQL do LangChain para gerar uma resposta. O formato deve ser:\n" |
|
"\nPergunta: <pergunta do usuário>\n" |
|
"\nOpção de Query SQL:\n<query SQL>" |
|
"\nIdioma: <idioma>" |
|
) |
|
|
|
def is_greeting(user_query): |
|
greetings = ["olá", "oi", "bom dia", "boa tarde", "boa noite", "oi, tudo bem?"] |
|
return user_query.lower().strip() in greetings |
|
|
|
def query_with_llama(user_query, db_sample, selected_model_name): |
|
model_id = LLAMA_MODELS[selected_model_name] |
|
max_tokens = MAX_TOKENS_MAP.get(model_id, 512) |
|
|
|
initial_context = generate_initial_context(db_sample) |
|
formatted_history = "\n".join( |
|
[f"{msg['role'].capitalize()}: {msg['content']}" for msg in recent_history[-2:]] |
|
) |
|
|
|
full_prompt = f"{initial_context}\n\nHistórico recente:\n{formatted_history}\n\nPergunta do usuário:\n{user_query}" |
|
|
|
logging.info(f"[DEBUG] Contexto enviado ao ({selected_model_name}):\n{full_prompt}\n") |
|
|
|
start_time = time.time() |
|
|
|
try: |
|
response = hf_client.chat.completions.create( |
|
model=model_id, |
|
messages=[{"role": "system", "content": full_prompt}], |
|
max_tokens=max_tokens, |
|
stream=False |
|
) |
|
|
|
llama_response = response["choices"][0]["message"]["content"] |
|
end_time = time.time() |
|
logging.info(f"[DEBUG] Resposta do {selected_model_name} para o Agent SQL:\n{llama_response.strip()}\n[Tempo de execução: {end_time - start_time:.2f}s]\n") |
|
return llama_response.strip(), model_id |
|
|
|
except Exception as e: |
|
logging.error(f"[ERRO] Falha ao interagir com o modelo {selected_model_name}: {e}") |
|
return None, model_id |
|
|
|
def query_sql_agent(user_query, selected_model_name): |
|
try: |
|
if user_query in query_cache: |
|
print(f"[CACHE] Retornando resposta do cache para a consulta: {user_query}") |
|
return query_cache[user_query] |
|
|
|
if is_greeting(user_query): |
|
greeting_response = "Olá! Estou aqui para ajudar com suas consultas. Pergunte algo relacionado aos dados carregados no agente!" |
|
query_cache[user_query] = greeting_response |
|
return greeting_response |
|
|
|
column_data = pd.read_sql_query("SELECT * FROM anomalia_vendas LIMIT 10", engine) |
|
llama_instruction = query_with_llama(user_query, column_data, selected_model_name) |
|
|
|
if not llama_instruction: |
|
return "Erro: O modelo Llama não conseguiu gerar uma instrução válida." |
|
|
|
print("------- Agent SQL: Executando query -------") |
|
response = sql_agent.invoke({"input": llama_instruction}) |
|
sql_response = response.get("output", "Erro ao obter a resposta do agente.") |
|
|
|
query_cache[user_query] = sql_response |
|
return sql_response |
|
|
|
except Exception as e: |
|
return f"Erro ao consultar o agente SQL: {e}" |
|
|
|
def chatbot_response(user_input, selected_model_name): |
|
start_time = time.time() |
|
response = query_sql_agent(user_input, selected_model_name) |
|
end_time = time.time() |
|
|
|
model_id = LLAMA_MODELS[selected_model_name] |
|
|
|
history_log.append({ |
|
"Modelo LLM": model_id, |
|
"Pergunta": user_input, |
|
"Resposta": response, |
|
"Tempo de Resposta (s)": round(end_time - start_time, 2) |
|
}) |
|
|
|
recent_history.append({"role": "user", "content": user_input}) |
|
recent_history.append({"role": "assistant", "content": response}) |
|
|
|
if len(recent_history) > 4: |
|
recent_history.pop(0) |
|
recent_history.pop(0) |
|
|
|
return response |
|
|
|
def toggle_history(): |
|
global show_history_flag |
|
show_history_flag = not show_history_flag |
|
return history_log if show_history_flag else {} |
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown("# 🧠 Anomalia Agent") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.Markdown("## ⚙️ Configurações") |
|
model_selector = gr.Dropdown( |
|
choices=list(LLAMA_MODELS.keys()), |
|
label="Escolha o Modelo LLM para gerar a query SQL", |
|
value="LLaMA 70B" |
|
) |
|
csv_file = gr.File(label="📂 Enviar novo CSV", file_types=[".csv"]) |
|
|
|
with gr.Column(scale=4): |
|
chatbot = gr.Chatbot(height=600) |
|
msg = gr.Textbox(placeholder="Digite sua pergunta aqui...", label=" ", lines=1) |
|
btn = gr.Button("Enviar", variant="primary") |
|
history_btn = gr.Button("Histórico", variant="secondary") |
|
|
|
def respond(message, chat_history, selected_model_name): |
|
response = chatbot_response(message, selected_model_name) |
|
chat_history.append((message, response)) |
|
return "", chat_history |
|
|
|
msg.submit(respond, [msg, chatbot, model_selector], [msg, chatbot]) |
|
btn.click(respond, [msg, chatbot, model_selector], [msg, chatbot]) |
|
|
|
history_output = gr.JSON() |
|
history_btn.click(toggle_history, inputs=[], outputs=history_output) |
|
|
|
def handle_csv_upload(file): |
|
global engine, db, sql_agent |
|
|
|
try: |
|
engine = load_uploaded_csv_and_create_db(file) |
|
if engine is not None: |
|
db = SQLDatabase(engine=engine) |
|
sql_agent = create_sql_agent( |
|
ChatOpenAI(model="gpt-4o-mini", temperature=0), |
|
db=db, |
|
agent_type="openai-tools", |
|
verbose=True, |
|
max_iterations=40, |
|
return_intermediate_steps=True |
|
) |
|
print("[UPLOAD] Banco e agente SQL atualizados com sucesso.") |
|
except Exception as e: |
|
print(f"[ERRO] Falha ao processar novo CSV: {e}") |
|
|
|
csv_file.change(handle_csv_upload, inputs=csv_file, outputs=csv_file) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=False) |