Spaces:
Sleeping
Sleeping
Simplified model and dataset loading for testing
Browse files
app.py
CHANGED
@@ -1 +1,26 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from datasets import load_dataset
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Check if GPU is available
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
|
9 |
+
# Load the IMDb dataset
|
10 |
+
dataset = load_dataset('imdb', split='test[:1%]') # Load a small portion for testing
|
11 |
+
|
12 |
+
# Initialize the tokenizer and model
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased')
|
14 |
+
model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased', num_labels=2)
|
15 |
+
model.to(device)
|
16 |
+
|
17 |
+
# Function to classify sentiment
|
18 |
+
def classify_text(text):
|
19 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
20 |
+
outputs = model(**inputs)
|
21 |
+
prediction = torch.argmax(outputs.logits, dim=-1).item()
|
22 |
+
return "Positive" if prediction == 1 else "Negative"
|
23 |
+
|
24 |
+
# Set up the Gradio interface
|
25 |
+
iface = gr.Interface(fn=classify_text, inputs="text", outputs="text")
|
26 |
+
iface.launch()
|