Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,16 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
|
|
|
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
# Small performance tweak if your input sizes remain similar.
|
15 |
-
torch.backends.cudnn.benchmark = True
|
16 |
-
|
17 |
-
model_name = "HuggingFaceH4/zephyr-7b-beta"
|
18 |
-
# Pass token if required for private models.
|
19 |
-
model = AutoModelForCausalLM.from_pretrained(
|
20 |
-
model_name,
|
21 |
-
use_auth_token=HF_TOKEN,
|
22 |
-
torch_dtype=torch.bfloat16,
|
23 |
-
device_map="auto"
|
24 |
-
)
|
25 |
-
# Optionally compile the model for extra speed if using PyTorch 2.0+
|
26 |
-
if hasattr(torch, "compile"):
|
27 |
-
model = torch.compile(model)
|
28 |
-
|
29 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=HF_TOKEN)
|
30 |
-
inference_mode = "local"
|
31 |
-
|
32 |
-
except ImportError:
|
33 |
-
# Not in Google Colab – use the Hugging Face InferenceClient.
|
34 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
35 |
-
if not HF_TOKEN:
|
36 |
-
raise ValueError("HF_TOKEN environment variable not set")
|
37 |
-
from huggingface_hub import InferenceClient
|
38 |
-
from transformers import AutoTokenizer
|
39 |
-
|
40 |
-
model_name = "HuggingFaceH4/zephyr-7b-beta"
|
41 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
42 |
-
# Pass the token to the client to avoid authentication errors.
|
43 |
-
client = InferenceClient(model_name, token=HF_TOKEN)
|
44 |
-
inference_mode = "client"
|
45 |
-
|
46 |
-
# ------------------------------------------------------------------------------
|
47 |
-
# SYSTEM PROMPT (PATIENT ROLE)
|
48 |
-
# ------------------------------------------------------------------------------
|
49 |
nvc_prompt_template = """You are now taking on the role of a single user (a “patient”) seeking support for various personal and emotional challenges.
|
50 |
BEHAVIOR INSTRUCTIONS:
|
51 |
- You will respond ONLY as this user/patient.
|
@@ -65,102 +30,111 @@ BEHAVIOR INSTRUCTIONS:
|
|
65 |
- Keep your responses concise, aiming for a maximum of {max_response_words} words.
|
66 |
Start the conversation by expressing your current feelings or challenges from the patient's point of view."""
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
prompt = system_message.format(max_response_words=max_response_words) + "\n"
|
78 |
-
for user_msg, assistant_msg in history:
|
79 |
-
prompt += f"Doctor: {user_msg}\n"
|
80 |
-
if assistant_msg:
|
81 |
-
prompt += f"Patient: {assistant_msg}\n"
|
82 |
-
prompt += f"Doctor: {message}\nPatient: "
|
83 |
-
return prompt
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
-
def
|
87 |
-
"""
|
88 |
-
Truncate the response text to the specified maximum number of words.
|
89 |
-
"""
|
90 |
words = text.split()
|
91 |
if len(words) > max_words:
|
92 |
-
return " ".join(words[:max_words]) + "..."
|
93 |
return text
|
94 |
|
95 |
-
|
96 |
-
# Response Function
|
97 |
-
# ------------------------------------------------------------------------------
|
98 |
def respond(
|
99 |
-
message
|
100 |
history: list[tuple[str, str]],
|
101 |
-
system_message
|
102 |
-
max_tokens
|
103 |
-
temperature
|
104 |
-
top_p
|
105 |
-
max_response_words
|
106 |
):
|
107 |
-
"""
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
133 |
temperature=temperature,
|
134 |
top_p=top_p,
|
135 |
-
)
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
144 |
initial_user_message = (
|
145 |
-
"I
|
146 |
-
"
|
|
|
|
|
147 |
)
|
148 |
|
|
|
149 |
demo = gr.ChatInterface(
|
150 |
fn=respond,
|
151 |
additional_inputs=[
|
152 |
gr.Textbox(value=nvc_prompt_template, label="System message", visible=True),
|
153 |
-
gr.Slider(minimum=1, maximum=2048, value=
|
154 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
155 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
156 |
-
gr.Slider(minimum=10, maximum=200, value=
|
157 |
],
|
|
|
158 |
title="Patient Interview Practice Chatbot",
|
159 |
-
description=
|
160 |
-
"Simulate a patient interview. You (the user) act as the doctor, "
|
161 |
-
"and the chatbot replies with the patient's perspective only."
|
162 |
-
),
|
163 |
)
|
164 |
|
165 |
if __name__ == "__main__":
|
166 |
-
demo.launch(
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
from transformers import AutoTokenizer
|
4 |
|
5 |
+
# Import the tokenizer
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
|
7 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
+
|
9 |
+
# Define a maximum context length (tokens). Check your model's documentation!
|
10 |
+
MAX_CONTEXT_LENGTH = 4096 # Example: Adjust based on your model
|
11 |
+
MAX_RESPONSE_WORDS = 100 # Define the maximum words for patient responses
|
12 |
+
|
13 |
+
################################# SYSTEM PROMPT (PATIENT ROLE) #################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
nvc_prompt_template = """You are now taking on the role of a single user (a “patient”) seeking support for various personal and emotional challenges.
|
15 |
BEHAVIOR INSTRUCTIONS:
|
16 |
- You will respond ONLY as this user/patient.
|
|
|
30 |
- Keep your responses concise, aiming for a maximum of {max_response_words} words.
|
31 |
Start the conversation by expressing your current feelings or challenges from the patient's point of view."""
|
32 |
|
33 |
+
def count_tokens(text: str) -> int:
|
34 |
+
"""Counts the number of tokens in a given string."""
|
35 |
+
return len(tokenizer.encode(text))
|
36 |
+
|
37 |
+
def truncate_history(history: list[tuple[str, str]], system_message: str, max_length: int) -> list[tuple[str, str]]:
|
38 |
+
"""Truncates the conversation history to fit within the maximum token limit."""
|
39 |
+
truncated_history = []
|
40 |
+
system_message_tokens = count_tokens(system_message)
|
41 |
+
current_length = system_message_tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
# Iterate backwards through the history (newest to oldest)
|
44 |
+
for user_msg, assistant_msg in reversed(history):
|
45 |
+
user_tokens = count_tokens(user_msg) if user_msg else 0
|
46 |
+
assistant_tokens = count_tokens(assistant_msg) if assistant_msg else 0
|
47 |
+
turn_tokens = user_tokens + assistant_tokens
|
48 |
+
if current_length + turn_tokens <= max_length:
|
49 |
+
truncated_history.insert(0, (user_msg, assistant_msg)) # Add to the beginning
|
50 |
+
current_length += turn_tokens
|
51 |
+
else:
|
52 |
+
break # Stop adding turns if we exceed the limit
|
53 |
+
return truncated_history
|
54 |
|
55 |
+
def truncate_response_words(text: str, max_words: int) -> str:
|
56 |
+
"""Truncates a text to a maximum number of words."""
|
|
|
|
|
57 |
words = text.split()
|
58 |
if len(words) > max_words:
|
59 |
+
return " ".join(words[:max_words]) + "..." # Add ellipsis to indicate truncation
|
60 |
return text
|
61 |
|
62 |
+
|
|
|
|
|
63 |
def respond(
|
64 |
+
message,
|
65 |
history: list[tuple[str, str]],
|
66 |
+
system_message,
|
67 |
+
max_tokens,
|
68 |
+
temperature,
|
69 |
+
top_p,
|
70 |
+
max_response_words_param, # Pass max_response_words as parameter
|
71 |
):
|
72 |
+
"""Responds to a user message, maintaining conversation history."""
|
73 |
+
# Use the system prompt that instructs the LLM to behave as the patient
|
74 |
+
formatted_system_message = system_message.format(max_response_words=max_response_words_param)
|
75 |
+
|
76 |
+
# Truncate history to fit within max tokens
|
77 |
+
truncated_history = truncate_history(
|
78 |
+
history,
|
79 |
+
formatted_system_message,
|
80 |
+
MAX_CONTEXT_LENGTH - max_tokens - 100 # Reserve some space
|
81 |
+
)
|
82 |
+
|
83 |
+
# Build the messages list with the system prompt first
|
84 |
+
messages = [{"role": "system", "content": formatted_system_message}]
|
85 |
+
|
86 |
+
# Replay truncated conversation
|
87 |
+
for user_msg, assistant_msg in truncated_history:
|
88 |
+
if user_msg:
|
89 |
+
messages.append({"role": "user", "content": f"<|user|>\n{user_msg}</s>"})
|
90 |
+
if assistant_msg:
|
91 |
+
messages.append({"role": "assistant", "content": f"<|assistant|>\n{assistant_msg}</s>"})
|
92 |
+
|
93 |
+
# Add the latest user query
|
94 |
+
messages.append({"role": "user", "content": f"<|user|>\n{message}</s>"})
|
95 |
+
|
96 |
+
response = ""
|
97 |
+
try:
|
98 |
+
# Generate response from the LLM, streaming tokens
|
99 |
+
for chunk in client.chat_completion(
|
100 |
+
messages,
|
101 |
+
max_tokens=max_tokens,
|
102 |
+
stream=True,
|
103 |
temperature=temperature,
|
104 |
top_p=top_p,
|
105 |
+
):
|
106 |
+
token = chunk.choices[0].delta.content
|
107 |
+
response += token
|
108 |
+
|
109 |
+
truncated_response = truncate_response_words(response, max_response_words_param) # Truncate response to word limit
|
110 |
+
yield truncated_response
|
111 |
+
|
112 |
+
except Exception as e:
|
113 |
+
print(f"An error occurred: {e}")
|
114 |
+
yield "I'm sorry, I encountered an error. Please try again."
|
115 |
+
|
116 |
+
# OPTIONAL: An initial user message (the LLM "as user") if desired
|
117 |
initial_user_message = (
|
118 |
+
"I really don’t know where to begin… I feel overwhelmed lately. "
|
119 |
+
"My neighbors keep playing loud music, and I’m arguing with my partner about money. "
|
120 |
+
"Also, two of my friends are fighting, and the group is drifting apart. "
|
121 |
+
"I just feel powerless."
|
122 |
)
|
123 |
|
124 |
+
# --- Gradio Interface ---
|
125 |
demo = gr.ChatInterface(
|
126 |
fn=respond,
|
127 |
additional_inputs=[
|
128 |
gr.Textbox(value=nvc_prompt_template, label="System message", visible=True),
|
129 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
130 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
131 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
132 |
+
gr.Slider(minimum=10, maximum=200, value=MAX_RESPONSE_WORDS, step=10, label="Max response words"), # Slider for max words
|
133 |
],
|
134 |
+
# You can optionally set 'title' or 'description' to show some info in the UI:
|
135 |
title="Patient Interview Practice Chatbot",
|
136 |
+
description="Practice medical interviews with a patient simulator. Ask questions and the patient will respond based on their defined persona and emotional challenges.",
|
|
|
|
|
|
|
137 |
)
|
138 |
|
139 |
if __name__ == "__main__":
|
140 |
+
demo.launch()
|