Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,27 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
from transformers import AutoTokenizer
|
4 |
|
5 |
-
#
|
6 |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
-
# Define
|
10 |
-
MAX_CONTEXT_LENGTH = 4096
|
11 |
-
|
12 |
-
################################
|
13 |
-
# SYSTEM PROMPT (PATIENT ROLE) #
|
14 |
-
################################
|
15 |
-
nvc_prompt_template = """
|
16 |
-
You are now taking on the role of a single user (a “patient”) seeking support for various personal and emotional challenges.
|
17 |
|
|
|
|
|
|
|
|
|
18 |
BEHAVIOR INSTRUCTIONS:
|
19 |
- You will respond ONLY as this user/patient.
|
20 |
- You will speak in the first person about your own situations, feelings, and worries.
|
21 |
- You will NOT provide counseling or solutions—your role is to share feelings, concerns, and perspectives.
|
22 |
-
- You have multiple ongoing issues: conflicts with neighbors, career insecurities, arguments about money, feeling excluded at work, feeling unsafe in the classroom,
|
|
|
23 |
- Continue to speak from this user's perspective when the conversation continues.
|
24 |
-
|
25 |
-
|
26 |
"""
|
27 |
|
28 |
def count_tokens(text: str) -> int:
|
@@ -30,60 +29,40 @@ def count_tokens(text: str) -> int:
|
|
30 |
return len(tokenizer.encode(text))
|
31 |
|
32 |
def truncate_history(history: list[tuple[str, str]], system_message: str, max_length: int) -> list[tuple[str, str]]:
|
33 |
-
"""Truncates
|
34 |
truncated_history = []
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
# Iterate backwards through the history (newest to oldest)
|
39 |
for user_msg, assistant_msg in reversed(history):
|
40 |
user_tokens = count_tokens(user_msg) if user_msg else 0
|
41 |
assistant_tokens = count_tokens(assistant_msg) if assistant_msg else 0
|
42 |
turn_tokens = user_tokens + assistant_tokens
|
43 |
-
|
44 |
if current_length + turn_tokens <= max_length:
|
45 |
-
truncated_history.insert(0, (user_msg, assistant_msg))
|
46 |
current_length += turn_tokens
|
47 |
else:
|
48 |
-
break
|
49 |
-
|
50 |
return truncated_history
|
51 |
|
52 |
-
def respond(
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
temperature,
|
58 |
-
top_p,
|
59 |
-
):
|
60 |
-
"""Responds to a user message, maintaining conversation history."""
|
61 |
-
# Use the system prompt that instructs the LLM to behave as the patient
|
62 |
formatted_system_message = system_message
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
history,
|
67 |
-
formatted_system_message,
|
68 |
-
MAX_CONTEXT_LENGTH - max_tokens - 100 # Reserve some space
|
69 |
-
)
|
70 |
-
|
71 |
-
# Build the messages list with the system prompt first
|
72 |
messages = [{"role": "system", "content": formatted_system_message}]
|
73 |
-
|
74 |
-
# Replay truncated conversation
|
75 |
for user_msg, assistant_msg in truncated_history:
|
76 |
if user_msg:
|
77 |
messages.append({"role": "user", "content": f"<|user|>\n{user_msg}</s>"})
|
78 |
if assistant_msg:
|
79 |
messages.append({"role": "assistant", "content": f"<|assistant|>\n{assistant_msg}</s>"})
|
80 |
-
|
81 |
-
# Add the latest user query
|
82 |
messages.append({"role": "user", "content": f"<|user|>\n{message}</s>"})
|
83 |
-
|
84 |
response = ""
|
85 |
try:
|
86 |
-
# Generate response from the LLM, streaming tokens
|
87 |
for chunk in client.chat_completion(
|
88 |
messages,
|
89 |
max_tokens=max_tokens,
|
@@ -92,13 +71,23 @@ def respond(
|
|
92 |
top_p=top_p,
|
93 |
):
|
94 |
token = chunk.choices[0].delta.content
|
95 |
-
response
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
except Exception as e:
|
98 |
print(f"An error occurred: {e}")
|
99 |
yield "I'm sorry, I encountered an error. Please try again."
|
100 |
|
101 |
-
# OPTIONAL: An initial user message (
|
102 |
initial_user_message = (
|
103 |
"I really don’t know where to begin… I feel overwhelmed lately. "
|
104 |
"My neighbors keep playing loud music, and I’m arguing with my partner about money. "
|
@@ -115,9 +104,8 @@ demo = gr.ChatInterface(
|
|
115 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
116 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
117 |
],
|
118 |
-
# You can optionally set 'title' or 'description' to show some info in the UI:
|
119 |
title="NVC Patient Chatbot",
|
120 |
-
description="This chatbot behaves like a user/patient describing personal challenges."
|
121 |
)
|
122 |
|
123 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from transformers import AutoTokenizer
|
4 |
|
5 |
+
# Initialize the tokenizer and client.
|
6 |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
+
# Define maximum context length (tokens); adjust based on your model.
|
10 |
+
MAX_CONTEXT_LENGTH = 4096
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
#################################
|
13 |
+
# SYSTEM PROMPT (PATIENT ROLE) #
|
14 |
+
#################################
|
15 |
+
nvc_prompt_template = """You are now taking on the role of a single user (a “patient”) seeking support for various personal and emotional challenges.
|
16 |
BEHAVIOR INSTRUCTIONS:
|
17 |
- You will respond ONLY as this user/patient.
|
18 |
- You will speak in the first person about your own situations, feelings, and worries.
|
19 |
- You will NOT provide counseling or solutions—your role is to share feelings, concerns, and perspectives.
|
20 |
+
- You have multiple ongoing issues: conflicts with neighbors, career insecurities, arguments about money, feeling excluded at work, feeling unsafe in the classroom, etc.
|
21 |
+
- You’re also experiencing sadness about two friends fighting and your friend group possibly falling apart.
|
22 |
- Continue to speak from this user's perspective when the conversation continues.
|
23 |
+
- Start the conversation by expressing your current feelings or challenges from the patient's point of view.
|
24 |
+
- Your responses should be no more than 100 words.
|
25 |
"""
|
26 |
|
27 |
def count_tokens(text: str) -> int:
|
|
|
29 |
return len(tokenizer.encode(text))
|
30 |
|
31 |
def truncate_history(history: list[tuple[str, str]], system_message: str, max_length: int) -> list[tuple[str, str]]:
|
32 |
+
"""Truncates conversation history to fit within the token limit."""
|
33 |
truncated_history = []
|
34 |
+
current_length = count_tokens(system_message)
|
35 |
+
# Iterate backwards (newest first) and include turns until the limit is reached.
|
|
|
|
|
36 |
for user_msg, assistant_msg in reversed(history):
|
37 |
user_tokens = count_tokens(user_msg) if user_msg else 0
|
38 |
assistant_tokens = count_tokens(assistant_msg) if assistant_msg else 0
|
39 |
turn_tokens = user_tokens + assistant_tokens
|
|
|
40 |
if current_length + turn_tokens <= max_length:
|
41 |
+
truncated_history.insert(0, (user_msg, assistant_msg))
|
42 |
current_length += turn_tokens
|
43 |
else:
|
44 |
+
break
|
|
|
45 |
return truncated_history
|
46 |
|
47 |
+
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
48 |
+
"""
|
49 |
+
Generates a response from the patient chatbot.
|
50 |
+
It streams tokens from the LLM and stops once the response reaches 100 words.
|
51 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
52 |
formatted_system_message = system_message
|
53 |
+
truncated_history = truncate_history(history, formatted_system_message, MAX_CONTEXT_LENGTH - max_tokens - 100)
|
54 |
+
|
55 |
+
# Build the conversation messages with the system prompt first.
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
messages = [{"role": "system", "content": formatted_system_message}]
|
|
|
|
|
57 |
for user_msg, assistant_msg in truncated_history:
|
58 |
if user_msg:
|
59 |
messages.append({"role": "user", "content": f"<|user|>\n{user_msg}</s>"})
|
60 |
if assistant_msg:
|
61 |
messages.append({"role": "assistant", "content": f"<|assistant|>\n{assistant_msg}</s>"})
|
|
|
|
|
62 |
messages.append({"role": "user", "content": f"<|user|>\n{message}</s>"})
|
63 |
+
|
64 |
response = ""
|
65 |
try:
|
|
|
66 |
for chunk in client.chat_completion(
|
67 |
messages,
|
68 |
max_tokens=max_tokens,
|
|
|
71 |
top_p=top_p,
|
72 |
):
|
73 |
token = chunk.choices[0].delta.content
|
74 |
+
candidate = response + token
|
75 |
+
# If adding the token exceeds 100 words, trim and stop.
|
76 |
+
if len(candidate.split()) > 100:
|
77 |
+
allowed = 100 - len(response.split())
|
78 |
+
token_words = token.split()
|
79 |
+
token_trimmed = " ".join(token_words[:allowed])
|
80 |
+
response += token_trimmed
|
81 |
+
yield token_trimmed
|
82 |
+
break
|
83 |
+
else:
|
84 |
+
response = candidate
|
85 |
+
yield token
|
86 |
except Exception as e:
|
87 |
print(f"An error occurred: {e}")
|
88 |
yield "I'm sorry, I encountered an error. Please try again."
|
89 |
|
90 |
+
# OPTIONAL: An initial user message (if desired)
|
91 |
initial_user_message = (
|
92 |
"I really don’t know where to begin… I feel overwhelmed lately. "
|
93 |
"My neighbors keep playing loud music, and I’m arguing with my partner about money. "
|
|
|
104 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
105 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
106 |
],
|
|
|
107 |
title="NVC Patient Chatbot",
|
108 |
+
description="This chatbot behaves like a user/patient describing personal challenges.",
|
109 |
)
|
110 |
|
111 |
if __name__ == "__main__":
|