File size: 17,334 Bytes
7eb0ce3
35932eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb25b2
 
6b58dd1
ebb25b2
35932eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b58dd1
 
 
 
35932eb
6b58dd1
35932eb
 
 
6b58dd1
35932eb
 
 
 
 
 
 
 
 
 
ebb25b2
35932eb
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb25b2
35932eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb25b2
35932eb
ebb25b2
 
 
 
 
35932eb
 
ebb25b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649181c
 
ebb25b2
 
 
 
 
 
 
35932eb
 
 
 
9c3c737
 
 
 
 
 
15534ac
9c3c737
 
 
35932eb
9c3c737
 
 
 
 
 
 
 
35932eb
 
9c3c737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb25b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35932eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c3c737
35932eb
 
9c3c737
35932eb
 
 
 
 
 
 
ebb25b2
 
 
649181c
ebb25b2
 
35932eb
 
 
 
 
 
9c3c737
35932eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb25b2
 
35932eb
ebb25b2
35932eb
ebb25b2
35932eb
 
9c3c737
35932eb
 
 
 
 
9c3c737
 
 
 
 
ebb25b2
35932eb
ebb25b2
c1f9bb7
 
 
 
35932eb
 
 
 
 
 
 
 
 
 
 
 
649181c
35932eb
ebb25b2
35932eb
 
 
ebb25b2
9c3c737
35932eb
 
 
 
 
 
 
 
9c3c737
ebb25b2
9c3c737
 
 
35932eb
9c3c737
ebb25b2
9c3c737
 
7eb0ce3
7b82a16
 
 
 
 
 
35932eb
 
 
 
 
7b82a16
7eb0ce3
 
 
 
9c3c737
35932eb
9c3c737
 
 
ebb25b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
"""Developed by Ruslan Magana Vsevolodovna"""
from collections.abc import Iterator
from datetime import datetime
from pathlib import Path
from threading import Thread
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import random
from themes.research_monochrome import theme

# =============================================================================
# Constants & Prompts
# =============================================================================
today_date = datetime.today().strftime("%B %-d, %Y")  # noqa: DTZ002
SYS_PROMPT = f"""Knowledge Cutoff Date: April 2024.Today's Date: {today_date}.You are Granite, developed by IBM. You are a helpful AI assistant. Respond in the following format:<reasoning>Step-by-step reasoning to arrive at the answer.</reasoning><answer>The final answer to the user's query.</answer> If reasoning is not applicable, you can directly provide the <answer>."""
TITLE = "IBM Granite 3.1 8b Reasoning & Vision Preview"
DESCRIPTION = """<p>Granite 3.1 8b Reasoning is an open‐source LLM supporting a 128k context window and Granite Vision 3.1 2B Preview for vision‐language capabilities. Start with one of the sample promptsor enter your own. Keep in mind that AI can occasionally make mistakes.<span class="gr_docs_link"><a href="https://www.ibm.com/granite/docs/">View Documentation <i class="fa fa-external-link"></i></a></span></p>"""
MAX_INPUT_TOKEN_LENGTH = 128_000
MAX_NEW_TOKENS = 1024
TEMPERATURE = 0.7
TOP_P = 0.85
TOP_K = 50
REPETITION_PENALTY = 1.05
# Vision defaults (advanced settings)
VISION_TEMPERATURE = 0.2
VISION_TOP_P = 0.95
VISION_TOP_K = 50
VISION_MAX_TOKENS = 128

if not torch.cuda.is_available():
    print("This demo may not work on CPU.")
# =============================================================================
# Text Model Loading
# =============================================================================
#Standard Model
#granite_text_model="ibm-granite/granite-3.1-8b-instruct"
#With Reasoning
granite_text_model="ruslanmv/granite-3.1-8b-Reasoning"
text_model = AutoModelForCausalLM.from_pretrained(
    granite_text_model,
    torch_dtype=torch.float16,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(granite_text_model)
tokenizer.use_default_system_prompt = False
# =============================================================================
# Vision Model Loading
# =============================================================================
vision_model_path = "ibm-granite/granite-vision-3.1-2b-preview"
vision_processor = LlavaNextProcessor.from_pretrained(vision_model_path, use_fast=True)
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
    vision_model_path,
    torch_dtype=torch.float16,
    device_map="auto",
    trust_remote_code=True  # Ensure the custom code is used so that weight shapes match.)
)
# =============================================================================
# Text Generation Function (for text-only chat)
# =============================================================================
@spaces.GPU
def generate(
    message: str,
    chat_history: list[dict],
    temperature: float = TEMPERATURE,
    repetition_penalty: float = REPETITION_PENALTY,
    top_p: float = TOP_P,
    top_k: float = TOP_K,
    max_new_tokens: int = MAX_NEW_TOKENS,
) -> Iterator[str]:
    """Generate function for text chat demo with chain of thought display."""
    conversation = []
    conversation.append({"role": "system", "content": SYS_PROMPT})
    conversation.extend(chat_history)
    conversation.append({"role": "user", "content": message})
    input_ids = tokenizer.apply_chat_template(
        conversation,
        return_tensors="pt",
        add_generation_prompt=True,
        truncation=True,
        max_length=MAX_INPUT_TOKEN_LENGTH - max_new_tokens,
    )
    input_ids = input_ids.to(text_model.device)
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=text_model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    reasoning_started = False
    answer_started = False
    collected_reasoning = ""
    collected_answer = ""

    for text in streamer:
        outputs.append(text)
        current_output = "".join(outputs)

        if "<reasoning>" in current_output and not reasoning_started:
            reasoning_started = True
            reasoning_start_index = current_output.find("<reasoning>") + len("<reasoning>")
            collected_reasoning = current_output[reasoning_start_index:]
            yield "[Reasoning]: "  # Indicate start of reasoning in chatbot
            outputs = [collected_reasoning] # Reset outputs to only include reasoning part

        elif reasoning_started and "<answer>" in current_output and not answer_started:
            answer_started = True
            reasoning_end_index = current_output.find("<answer>")
            collected_reasoning = current_output[len("<reasoning>"):reasoning_end_index] # Correctly extract reasoning part

            answer_start_index = current_output.find("<answer>") + len("<answer>")
            collected_answer = current_output[answer_start_index:]
            yield "\n[Answer]: " # Indicate start of answer in chatbot
            outputs = [collected_answer] # Reset outputs to only include answer part
            yield collected_answer # Yield initial part of answer

        elif reasoning_started and not answer_started:
            collected_reasoning = text # Accumulate reasoning tokens
            yield text # Stream reasoning tokens

        elif answer_started:
            collected_answer += text # Accumulate answer tokens
            yield text # Stream answer tokens
        else:
            yield text # In case no tags are found, stream as before


# =============================================================================
# Vision Chat Inference Function (for image+text chat)
# =============================================================================
def get_text_from_content(content):
    texts = []
    for item in content:
        if item["type"] == "text":
            texts.append(item["text"])
        elif item["type"] == "image":
            texts.append("<image>")
    return " ".join(texts)

@spaces.GPU
def chat_inference(image, text, conversation, temperature=VISION_TEMPERATURE, top_p=VISION_TOP_P, top_k=VISION_TOP_K, max_tokens=VISION_MAX_TOKENS):
    if conversation is None:
        conversation = []
    user_content = []
    if image is not None:
        user_content.append({"type": "image", "image": image})
    if text and text.strip():
        user_content.append({"type": "text", "text": text.strip()})
    if not user_content:
        return display_vision_conversation(conversation), conversation
    conversation.append({"role": "user", "content": user_content})
    inputs = vision_processor.apply_chat_template(
        conversation,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt"
    ).to("cuda")
    torch.manual_seed(random.randint(0, 10000))
    generation_kwargs = {
        "max_new_tokens": max_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "do_sample": True,
    }
    output = vision_model.generate(**inputs, **generation_kwargs)
    assistant_response = vision_processor.decode(output[0], skip_special_tokens=True)

    reasoning = ""
    answer = ""
    if "<reasoning>" in assistant_response and "<answer>" in assistant_response:
        reasoning_start = assistant_response.find("<reasoning>") + len("<reasoning>")
        reasoning_end = assistant_response.find("</reasoning>")
        reasoning = assistant_response[reasoning_start:reasoning_end].strip()

        answer_start = assistant_response.find("<answer>") + len("<answer>")
        answer_end = assistant_response.find("</answer>")

        if answer_end != -1: # Handle cases where answer end tag is present
            answer = assistant_response[answer_start:answer_end].strip()
        else: # Fallback if answer end tag is missing (less robust)
            answer = assistant_response[answer_start:].strip()


    formatted_response_content = []
    if reasoning:
        formatted_response_content.append({"type": "text", "text": f"[Reasoning]: {reasoning}"})
    formatted_response_content.append({"type": "text", "text": f"[Answer]: {answer}"})


    conversation.append({"role": "assistant", "content": formatted_response_content})
    return display_vision_conversation(conversation), conversation

# =============================================================================
# Helper Functions to Format Conversation for Display
# =============================================================================
def display_text_conversation(conversation):
    """Convert a text conversation (list of dicts) into a list of (user, assistant) tuples."""
    chat_history = []
    i = 0
    while i < len(conversation):
        if conversation[i]["role"] == "user":
            user_msg = conversation[i]["content"]
            assistant_msg = ""
            if i + 1 < len(conversation) and conversation[i+1]["role"] == "assistant":
                assistant_msg = conversation[i+1]["content"]
                i += 2
            else:
                i += 1
            chat_history.append((user_msg, assistant_msg))
        else:
            i += 1
    return chat_history

def display_vision_conversation(conversation):
    """Convert a vision conversation (with mixed content types) into a list of (user, assistant) tuples."""
    chat_history = []
    i = 0
    while i < len(conversation):
        if conversation[i]["role"] == "user":
            user_msg = get_text_from_content(conversation[i]["content"])
            assistant_msg = ""
            if i + 1 < len(conversation) and conversation[i+1]["role"] == "assistant":
                # Extract assistant text; remove any special tokens if present.
                assistant_content = conversation[i+1]["content"]
                assistant_text_parts = []
                for item in assistant_content:
                    if item["type"] == "text":
                        assistant_text_parts.append(item["text"])
                assistant_msg = "\n".join(assistant_text_parts).strip()
                i += 2
            else:
                i += 1
            chat_history.append((user_msg, assistant_msg))
        else:
            i += 1
    return chat_history
# =============================================================================
# Unified Send-Message Function
# =============================================================================
def send_message(image, text,
                 text_temperature, text_repetition_penalty, text_top_p, text_top_k, text_max_new_tokens,
                 vision_temperature, vision_top_p, vision_top_k, vision_max_tokens,
                 text_state, vision_state):
    """
    If an image is uploaded, use the vision model; otherwise, use the text model.
    Returns updated conversation (as a list of tuples) and state for each branch.
    """
    if image is not None:
        # Vision branch
        conv = vision_state if vision_state is not None else []
        chat_history, updated_conv = chat_inference(
            image, text, conv,
            temperature=vision_temperature,
            top_p=vision_top_p,
            top_k=vision_top_k,
            max_tokens=vision_max_tokens
        )
        vision_state = updated_conv
        # In vision mode, the conversation display is produced from the vision branch.
        return chat_history, text_state, vision_state
    else:
        # Text branch
        conv = text_state if text_state is not None else []
        output_text = ""
        for chunk in generate(
            text, conv,
            temperature=text_temperature,
            repetition_penalty=text_repetition_penalty,
            top_p=text_top_p,
            top_k=text_top_k,
            max_new_tokens=text_max_new_tokens
        ):
            output_text += chunk # Accumulate for display function to process correctly.

        conv.append({"role": "user", "content": text})
        conv.append({"role": "assistant", "content": output_text}) # Store full output with tags
        text_state = conv
        chat_history = display_text_conversation(text_state) # Display function handles tag parsing now.
        return chat_history, text_state, vision_state

def clear_chat():
    # Clear the conversation and input fields.
    return [], [], [], None  # (chat_history, text_state, vision_state, cleared text and image inputs)
# =============================================================================
# UI Layout with Gradio
# =============================================================================
css_file_path = Path(Path(__file__).parent / "app.css")
head_file_path = Path(Path(__file__).parent / "app_head.html")
with gr.Blocks(fill_height=True, css_paths=css_file_path, head_paths=head_file_path, theme=theme, title=TITLE) as demo:
    gr.HTML(f"<h1>{TITLE}</h1>", elem_classes=["gr_title"])
    gr.HTML(DESCRIPTION)

    chatbot = gr.Chatbot(label="Chat History", height=500)

    with gr.Row():
        with gr.Column(scale=2):
            image_input = gr.Image(type="pil", label="Upload Image (optional)")
            text_input = gr.Textbox(lines=2, placeholder="Enter your message here", label="Message")
        with gr.Column(scale=1):
            with gr.Accordion("Text Advanced Settings", open=False):
                text_temperature_slider = gr.Slider(minimum=0, maximum=1.0, value=TEMPERATURE, step=0.1, label="Temperature", elem_classes=["gr_accordion_element"])
                repetition_penalty_slider = gr.Slider(minimum=0, maximum=2.0, value=REPETITION_PENALTY, step=0.05, label="Repetition Penalty", elem_classes=["gr_accordion_element"])
                top_p_slider = gr.Slider(minimum=0, maximum=1.0, value=TOP_P, step=0.05, label="Top P", elem_classes=["gr_accordion_element"])
                top_k_slider = gr.Slider(minimum=0, maximum=100, value=TOP_K, step=1, label="Top K", elem_classes=["gr_accordion_element"])
                max_new_tokens_slider = gr.Slider(minimum=1, maximum=2000, value=MAX_NEW_TOKENS, step=1, label="Max New Tokens", elem_classes=["gr_accordion_element"])
            with gr.Accordion("Vision Advanced Settings", open=False):
                vision_temperature_slider = gr.Slider(minimum=0.0, maximum=2.0, value=VISION_TEMPERATURE, step=0.01, label="Vision Temperature", elem_classes=["gr_accordion_element"])
                vision_top_p_slider = gr.Slider(minimum=0.0, maximum=1.0, value=VISION_TOP_P, step=0.01, label="Vision Top p", elem_classes=["gr_accordion_element"])
                vision_top_k_slider = gr.Slider(minimum=0, maximum=100, value=VISION_TOP_K, step=1, label="Vision Top k", elem_classes=["gr_accordion_element"])
                vision_max_tokens_slider = gr.Slider(minimum=10, maximum=300, value=VISION_MAX_TOKENS, step=1, label="Vision Max Tokens", elem_classes=["gr_accordion_element"])
    send_button = gr.Button("Send Message")
    clear_button = gr.Button("Clear Chat")

    # Conversation state variables for each branch.
    text_state = gr.State([])
    vision_state = gr.State([])

    send_button.click(
        send_message,
        inputs=[
            image_input, text_input,
            text_temperature_slider, repetition_penalty_slider, top_p_slider, top_k_slider, max_new_tokens_slider,
            vision_temperature_slider, vision_top_p_slider, vision_top_k_slider, vision_max_tokens_slider,
            text_state, vision_state
        ],
        outputs=[chatbot, text_state, vision_state]
    )

    clear_button.click(
        clear_chat,
        inputs=None,
        outputs=[chatbot, text_state, vision_state, text_input, image_input]
    )

    gr.Examples(
        examples=[
            ["https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/cheetah1.jpg", "What is in this image?"],
            [None, "Explain quantum computing to a beginner."],
            [None, "What is OpenShift?"],
            [None, "Importance of low latency inference"],
            [None, "Boosting productivity habits"],
            [None, "Explain and document your code"],
            [None, "Generate Java Code"]
        ],
        inputs=[image_input, text_input],
        example_labels=[
            "Vision Example: What is in this image?",
            "Explain quantum computing",
            "What is OpenShift?",
            "Importance of low latency inference",
            "Boosting productivity habits",
            "Explain and document your code",
            "Generate Java Code"
        ],
        cache_examples=False,
    )

if __name__ == "__main__":
    demo.queue().launch()