Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,334 Bytes
7eb0ce3 35932eb ebb25b2 6b58dd1 ebb25b2 35932eb 6b58dd1 35932eb 6b58dd1 35932eb 6b58dd1 35932eb ebb25b2 35932eb ebb25b2 35932eb ebb25b2 35932eb ebb25b2 35932eb ebb25b2 649181c ebb25b2 35932eb 9c3c737 15534ac 9c3c737 35932eb 9c3c737 35932eb 9c3c737 ebb25b2 35932eb 9c3c737 35932eb 9c3c737 35932eb ebb25b2 649181c ebb25b2 35932eb 9c3c737 35932eb ebb25b2 35932eb ebb25b2 35932eb ebb25b2 35932eb 9c3c737 35932eb 9c3c737 ebb25b2 35932eb ebb25b2 c1f9bb7 35932eb 649181c 35932eb ebb25b2 35932eb ebb25b2 9c3c737 35932eb 9c3c737 ebb25b2 9c3c737 35932eb 9c3c737 ebb25b2 9c3c737 7eb0ce3 7b82a16 35932eb 7b82a16 7eb0ce3 9c3c737 35932eb 9c3c737 ebb25b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
"""Developed by Ruslan Magana Vsevolodovna"""
from collections.abc import Iterator
from datetime import datetime
from pathlib import Path
from threading import Thread
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import random
from themes.research_monochrome import theme
# =============================================================================
# Constants & Prompts
# =============================================================================
today_date = datetime.today().strftime("%B %-d, %Y") # noqa: DTZ002
SYS_PROMPT = f"""Knowledge Cutoff Date: April 2024.Today's Date: {today_date}.You are Granite, developed by IBM. You are a helpful AI assistant. Respond in the following format:<reasoning>Step-by-step reasoning to arrive at the answer.</reasoning><answer>The final answer to the user's query.</answer> If reasoning is not applicable, you can directly provide the <answer>."""
TITLE = "IBM Granite 3.1 8b Reasoning & Vision Preview"
DESCRIPTION = """<p>Granite 3.1 8b Reasoning is an open‐source LLM supporting a 128k context window and Granite Vision 3.1 2B Preview for vision‐language capabilities. Start with one of the sample promptsor enter your own. Keep in mind that AI can occasionally make mistakes.<span class="gr_docs_link"><a href="https://www.ibm.com/granite/docs/">View Documentation <i class="fa fa-external-link"></i></a></span></p>"""
MAX_INPUT_TOKEN_LENGTH = 128_000
MAX_NEW_TOKENS = 1024
TEMPERATURE = 0.7
TOP_P = 0.85
TOP_K = 50
REPETITION_PENALTY = 1.05
# Vision defaults (advanced settings)
VISION_TEMPERATURE = 0.2
VISION_TOP_P = 0.95
VISION_TOP_K = 50
VISION_MAX_TOKENS = 128
if not torch.cuda.is_available():
print("This demo may not work on CPU.")
# =============================================================================
# Text Model Loading
# =============================================================================
#Standard Model
#granite_text_model="ibm-granite/granite-3.1-8b-instruct"
#With Reasoning
granite_text_model="ruslanmv/granite-3.1-8b-Reasoning"
text_model = AutoModelForCausalLM.from_pretrained(
granite_text_model,
torch_dtype=torch.float16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(granite_text_model)
tokenizer.use_default_system_prompt = False
# =============================================================================
# Vision Model Loading
# =============================================================================
vision_model_path = "ibm-granite/granite-vision-3.1-2b-preview"
vision_processor = LlavaNextProcessor.from_pretrained(vision_model_path, use_fast=True)
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
vision_model_path,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True # Ensure the custom code is used so that weight shapes match.)
)
# =============================================================================
# Text Generation Function (for text-only chat)
# =============================================================================
@spaces.GPU
def generate(
message: str,
chat_history: list[dict],
temperature: float = TEMPERATURE,
repetition_penalty: float = REPETITION_PENALTY,
top_p: float = TOP_P,
top_k: float = TOP_K,
max_new_tokens: int = MAX_NEW_TOKENS,
) -> Iterator[str]:
"""Generate function for text chat demo with chain of thought display."""
conversation = []
conversation.append({"role": "system", "content": SYS_PROMPT})
conversation.extend(chat_history)
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(
conversation,
return_tensors="pt",
add_generation_prompt=True,
truncation=True,
max_length=MAX_INPUT_TOKEN_LENGTH - max_new_tokens,
)
input_ids = input_ids.to(text_model.device)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=text_model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
reasoning_started = False
answer_started = False
collected_reasoning = ""
collected_answer = ""
for text in streamer:
outputs.append(text)
current_output = "".join(outputs)
if "<reasoning>" in current_output and not reasoning_started:
reasoning_started = True
reasoning_start_index = current_output.find("<reasoning>") + len("<reasoning>")
collected_reasoning = current_output[reasoning_start_index:]
yield "[Reasoning]: " # Indicate start of reasoning in chatbot
outputs = [collected_reasoning] # Reset outputs to only include reasoning part
elif reasoning_started and "<answer>" in current_output and not answer_started:
answer_started = True
reasoning_end_index = current_output.find("<answer>")
collected_reasoning = current_output[len("<reasoning>"):reasoning_end_index] # Correctly extract reasoning part
answer_start_index = current_output.find("<answer>") + len("<answer>")
collected_answer = current_output[answer_start_index:]
yield "\n[Answer]: " # Indicate start of answer in chatbot
outputs = [collected_answer] # Reset outputs to only include answer part
yield collected_answer # Yield initial part of answer
elif reasoning_started and not answer_started:
collected_reasoning = text # Accumulate reasoning tokens
yield text # Stream reasoning tokens
elif answer_started:
collected_answer += text # Accumulate answer tokens
yield text # Stream answer tokens
else:
yield text # In case no tags are found, stream as before
# =============================================================================
# Vision Chat Inference Function (for image+text chat)
# =============================================================================
def get_text_from_content(content):
texts = []
for item in content:
if item["type"] == "text":
texts.append(item["text"])
elif item["type"] == "image":
texts.append("<image>")
return " ".join(texts)
@spaces.GPU
def chat_inference(image, text, conversation, temperature=VISION_TEMPERATURE, top_p=VISION_TOP_P, top_k=VISION_TOP_K, max_tokens=VISION_MAX_TOKENS):
if conversation is None:
conversation = []
user_content = []
if image is not None:
user_content.append({"type": "image", "image": image})
if text and text.strip():
user_content.append({"type": "text", "text": text.strip()})
if not user_content:
return display_vision_conversation(conversation), conversation
conversation.append({"role": "user", "content": user_content})
inputs = vision_processor.apply_chat_template(
conversation,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to("cuda")
torch.manual_seed(random.randint(0, 10000))
generation_kwargs = {
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"do_sample": True,
}
output = vision_model.generate(**inputs, **generation_kwargs)
assistant_response = vision_processor.decode(output[0], skip_special_tokens=True)
reasoning = ""
answer = ""
if "<reasoning>" in assistant_response and "<answer>" in assistant_response:
reasoning_start = assistant_response.find("<reasoning>") + len("<reasoning>")
reasoning_end = assistant_response.find("</reasoning>")
reasoning = assistant_response[reasoning_start:reasoning_end].strip()
answer_start = assistant_response.find("<answer>") + len("<answer>")
answer_end = assistant_response.find("</answer>")
if answer_end != -1: # Handle cases where answer end tag is present
answer = assistant_response[answer_start:answer_end].strip()
else: # Fallback if answer end tag is missing (less robust)
answer = assistant_response[answer_start:].strip()
formatted_response_content = []
if reasoning:
formatted_response_content.append({"type": "text", "text": f"[Reasoning]: {reasoning}"})
formatted_response_content.append({"type": "text", "text": f"[Answer]: {answer}"})
conversation.append({"role": "assistant", "content": formatted_response_content})
return display_vision_conversation(conversation), conversation
# =============================================================================
# Helper Functions to Format Conversation for Display
# =============================================================================
def display_text_conversation(conversation):
"""Convert a text conversation (list of dicts) into a list of (user, assistant) tuples."""
chat_history = []
i = 0
while i < len(conversation):
if conversation[i]["role"] == "user":
user_msg = conversation[i]["content"]
assistant_msg = ""
if i + 1 < len(conversation) and conversation[i+1]["role"] == "assistant":
assistant_msg = conversation[i+1]["content"]
i += 2
else:
i += 1
chat_history.append((user_msg, assistant_msg))
else:
i += 1
return chat_history
def display_vision_conversation(conversation):
"""Convert a vision conversation (with mixed content types) into a list of (user, assistant) tuples."""
chat_history = []
i = 0
while i < len(conversation):
if conversation[i]["role"] == "user":
user_msg = get_text_from_content(conversation[i]["content"])
assistant_msg = ""
if i + 1 < len(conversation) and conversation[i+1]["role"] == "assistant":
# Extract assistant text; remove any special tokens if present.
assistant_content = conversation[i+1]["content"]
assistant_text_parts = []
for item in assistant_content:
if item["type"] == "text":
assistant_text_parts.append(item["text"])
assistant_msg = "\n".join(assistant_text_parts).strip()
i += 2
else:
i += 1
chat_history.append((user_msg, assistant_msg))
else:
i += 1
return chat_history
# =============================================================================
# Unified Send-Message Function
# =============================================================================
def send_message(image, text,
text_temperature, text_repetition_penalty, text_top_p, text_top_k, text_max_new_tokens,
vision_temperature, vision_top_p, vision_top_k, vision_max_tokens,
text_state, vision_state):
"""
If an image is uploaded, use the vision model; otherwise, use the text model.
Returns updated conversation (as a list of tuples) and state for each branch.
"""
if image is not None:
# Vision branch
conv = vision_state if vision_state is not None else []
chat_history, updated_conv = chat_inference(
image, text, conv,
temperature=vision_temperature,
top_p=vision_top_p,
top_k=vision_top_k,
max_tokens=vision_max_tokens
)
vision_state = updated_conv
# In vision mode, the conversation display is produced from the vision branch.
return chat_history, text_state, vision_state
else:
# Text branch
conv = text_state if text_state is not None else []
output_text = ""
for chunk in generate(
text, conv,
temperature=text_temperature,
repetition_penalty=text_repetition_penalty,
top_p=text_top_p,
top_k=text_top_k,
max_new_tokens=text_max_new_tokens
):
output_text += chunk # Accumulate for display function to process correctly.
conv.append({"role": "user", "content": text})
conv.append({"role": "assistant", "content": output_text}) # Store full output with tags
text_state = conv
chat_history = display_text_conversation(text_state) # Display function handles tag parsing now.
return chat_history, text_state, vision_state
def clear_chat():
# Clear the conversation and input fields.
return [], [], [], None # (chat_history, text_state, vision_state, cleared text and image inputs)
# =============================================================================
# UI Layout with Gradio
# =============================================================================
css_file_path = Path(Path(__file__).parent / "app.css")
head_file_path = Path(Path(__file__).parent / "app_head.html")
with gr.Blocks(fill_height=True, css_paths=css_file_path, head_paths=head_file_path, theme=theme, title=TITLE) as demo:
gr.HTML(f"<h1>{TITLE}</h1>", elem_classes=["gr_title"])
gr.HTML(DESCRIPTION)
chatbot = gr.Chatbot(label="Chat History", height=500)
with gr.Row():
with gr.Column(scale=2):
image_input = gr.Image(type="pil", label="Upload Image (optional)")
text_input = gr.Textbox(lines=2, placeholder="Enter your message here", label="Message")
with gr.Column(scale=1):
with gr.Accordion("Text Advanced Settings", open=False):
text_temperature_slider = gr.Slider(minimum=0, maximum=1.0, value=TEMPERATURE, step=0.1, label="Temperature", elem_classes=["gr_accordion_element"])
repetition_penalty_slider = gr.Slider(minimum=0, maximum=2.0, value=REPETITION_PENALTY, step=0.05, label="Repetition Penalty", elem_classes=["gr_accordion_element"])
top_p_slider = gr.Slider(minimum=0, maximum=1.0, value=TOP_P, step=0.05, label="Top P", elem_classes=["gr_accordion_element"])
top_k_slider = gr.Slider(minimum=0, maximum=100, value=TOP_K, step=1, label="Top K", elem_classes=["gr_accordion_element"])
max_new_tokens_slider = gr.Slider(minimum=1, maximum=2000, value=MAX_NEW_TOKENS, step=1, label="Max New Tokens", elem_classes=["gr_accordion_element"])
with gr.Accordion("Vision Advanced Settings", open=False):
vision_temperature_slider = gr.Slider(minimum=0.0, maximum=2.0, value=VISION_TEMPERATURE, step=0.01, label="Vision Temperature", elem_classes=["gr_accordion_element"])
vision_top_p_slider = gr.Slider(minimum=0.0, maximum=1.0, value=VISION_TOP_P, step=0.01, label="Vision Top p", elem_classes=["gr_accordion_element"])
vision_top_k_slider = gr.Slider(minimum=0, maximum=100, value=VISION_TOP_K, step=1, label="Vision Top k", elem_classes=["gr_accordion_element"])
vision_max_tokens_slider = gr.Slider(minimum=10, maximum=300, value=VISION_MAX_TOKENS, step=1, label="Vision Max Tokens", elem_classes=["gr_accordion_element"])
send_button = gr.Button("Send Message")
clear_button = gr.Button("Clear Chat")
# Conversation state variables for each branch.
text_state = gr.State([])
vision_state = gr.State([])
send_button.click(
send_message,
inputs=[
image_input, text_input,
text_temperature_slider, repetition_penalty_slider, top_p_slider, top_k_slider, max_new_tokens_slider,
vision_temperature_slider, vision_top_p_slider, vision_top_k_slider, vision_max_tokens_slider,
text_state, vision_state
],
outputs=[chatbot, text_state, vision_state]
)
clear_button.click(
clear_chat,
inputs=None,
outputs=[chatbot, text_state, vision_state, text_input, image_input]
)
gr.Examples(
examples=[
["https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/cheetah1.jpg", "What is in this image?"],
[None, "Explain quantum computing to a beginner."],
[None, "What is OpenShift?"],
[None, "Importance of low latency inference"],
[None, "Boosting productivity habits"],
[None, "Explain and document your code"],
[None, "Generate Java Code"]
],
inputs=[image_input, text_input],
example_labels=[
"Vision Example: What is in this image?",
"Explain quantum computing",
"What is OpenShift?",
"Importance of low latency inference",
"Boosting productivity habits",
"Explain and document your code",
"Generate Java Code"
],
cache_examples=False,
)
if __name__ == "__main__":
demo.queue().launch() |