File size: 5,518 Bytes
3837b8b
 
 
 
 
 
 
 
 
 
 
1c32148
3043ccf
1c32148
3043ccf
df713c0
3837b8b
 
 
 
 
 
df713c0
 
 
 
3837b8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f962709
3837b8b
dfbd706
3837b8b
a704e4e
3043ccf
b1dee4e
c7f95a6
3837b8b
 
 
 
f962709
d7baea3
a704e4e
3043ccf
 
c08d7f7
 
1c32148
c08d7f7
3043ccf
 
3837b8b
 
 
 
1c32148
df713c0
 
 
 
c08d7f7
1c32148
 
 
3837b8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1dee4e
3837b8b
 
c69b1fb
 
3837b8b
 
 
 
27af9a6
3837b8b
f962709
b1dee4e
3837b8b
 
 
ee75616
 
 
 
 
 
 
3837b8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1dee4e
3837b8b
b1dee4e
3837b8b
 
 
 
 
 
 
 
 
f962709
 
 
 
 
3837b8b
 
62d4c39
403124b
3837b8b
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import gradio as gr
from backend.lcm_text_to_image import LCMTextToImage
from backend.models.lcmdiffusion_setting import LCMLora, LCMDiffusionSetting
from constants import DEVICE, LCM_DEFAULT_MODEL_OPENVINO
from time import perf_counter
import numpy as np
from cv2 import imencode
import base64
from backend.device import get_device_name
from constants import APP_VERSION
from backend.device import is_openvino_device
from PIL import Image
from backend.models.lcmdiffusion_setting import DiffusionTask
from backend.safety_check import is_safe_image
from pprint import pprint
from transformers import pipeline

lcm_text_to_image = LCMTextToImage()
lcm_lora = LCMLora(
    base_model_id="Lykon/dreamshaper-7",
    lcm_lora_id="latent-consistency/lcm-lora-sdv1-5",
)
classifier = pipeline(
    "image-classification",
    model="Falconsai/nsfw_image_detection",
)


# https://github.com/gradio-app/gradio/issues/2635#issuecomment-1423531319
def encode_pil_to_base64_new(pil_image):
    image_arr = np.asarray(pil_image)[:, :, ::-1]
    _, byte_data = imencode(".png", image_arr)
    base64_data = base64.b64encode(byte_data)
    base64_string_opencv = base64_data.decode("utf-8")
    return "data:image/png;base64," + base64_string_opencv


# monkey patching encode pil
gr.processing_utils.encode_pil_to_base64 = encode_pil_to_base64_new


def predict(
    prompt,
    steps,
    seed,
    use_seed,
):
    print(f"prompt - {prompt}")
    lcm_diffusion_setting = LCMDiffusionSetting()
    lcm_diffusion_setting.lcm_model_id = "rupeshs/hyper-sd-sdxl-1-step"
    lcm_diffusion_setting.diffusion_task = DiffusionTask.text_to_image.value
    lcm_diffusion_setting.openvino_lcm_model_id = "rupeshs/sd-turbo-openvino"
    lcm_diffusion_setting.use_lcm_lora = False
    lcm_diffusion_setting.prompt = prompt
    lcm_diffusion_setting.guidance_scale = 1.0
    lcm_diffusion_setting.inference_steps = steps
    lcm_diffusion_setting.seed = seed
    lcm_diffusion_setting.use_seed = use_seed
    lcm_diffusion_setting.use_safety_checker = True
    lcm_diffusion_setting.use_tiny_auto_encoder = False
    # lcm_diffusion_setting.image_width = 320 if is_openvino_device() else 512
    # lcm_diffusion_setting.image_height = 320 if is_openvino_device() else 512
    lcm_diffusion_setting.image_width = 512
    lcm_diffusion_setting.image_height = 512
    lcm_diffusion_setting.use_openvino = True
    lcm_diffusion_setting.use_tiny_auto_encoder = True
    pprint(lcm_diffusion_setting.model_dump())
    lcm_text_to_image.init(lcm_diffusion_setting=lcm_diffusion_setting)
    start = perf_counter()
    images = lcm_text_to_image.generate(lcm_diffusion_setting)
    latency = perf_counter() - start
    print(f"Latency: {latency:.2f} seconds")
    result = images[0]
    if is_safe_image(
        classifier,
        result,
    ):
        return result  # .resize([512, 512], Image.LANCZOS)
    else:
        print("Unsafe image detected")
        return Image.new("RGB", (512, 512), (0, 0, 0))


css = """
#container{
    margin: 0 auto;
    max-width: 40rem;
}
#intro{
    max-width: 100%;
    text-align: center;
    margin: 0 auto;
}
#generate_button {
    color: white;
    border-color: #007bff;
    background: #007bff;
    width: 200px;
    height: 50px;
}
footer {
    visibility: hidden
}
"""


def _get_footer_message() -> str:
    version = f"<center><p> {APP_VERSION} "
    footer_msg = version + (
        '  © 2025 <a href="https://github.com/rupeshs">'
        " Rupesh Sreeraman</a></p></center>"
    )
    warning_msg = "<p><b> Please note that this is a minimal demo app.</b> </p><br>"
    return warning_msg + footer_msg


with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="container"):
        use_openvino = "" if is_openvino_device() else ""
        gr.Markdown(
            f"""# FastSD CPU demo {use_openvino}
               **Device : {DEVICE.upper()} , {get_device_name()} | OpenVINO**
            """,
            elem_id="intro",
        )
        gr.HTML(
            f"""
            <p id="project-links" align="center">
                <a href='https://github.com/rupeshs/fastsdcpu'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
            </p> 
                    """
        )

        with gr.Row():
            with gr.Row():
                prompt = gr.Textbox(
                    placeholder="Describe the image you'd like to see",
                    scale=5,
                    container=False,
                )
                generate_btn = gr.Button(
                    "Generate",
                    scale=1,
                    elem_id="generate_button",
                )

        image = gr.Image(type="filepath")
        with gr.Accordion("Advanced options", open=False):
            steps = gr.Slider(
                label="Steps",
                value=1,
                minimum=1,
                maximum=3,
                step=1,
            )
            seed = gr.Slider(
                randomize=True,
                minimum=0,
                maximum=999999999,
                label="Seed",
                step=1,
            )
            seed_checkbox = gr.Checkbox(
                label="Use seed",
                value=False,
                interactive=True,
            )
        gr.HTML(_get_footer_message())

        inputs = [prompt, steps, seed, seed_checkbox]
        generate_btn.click(fn=predict, inputs=inputs, outputs=image)


def start_demo_text_to_image(share=False):
    demo.queue()
    demo.launch(share=share)