Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import SwinForImageClassification, AutoFeatureExtractor
|
5 |
+
import cv2
|
6 |
+
import mediapipe as mp
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from PIL import Image
|
9 |
+
import gradio as gr
|
10 |
+
import os
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
# Initialize id2label and label2id
|
14 |
+
id2label = {0: 'Heart', 1: 'Oblong', 2: 'Oval', 3: 'Round', 4: 'Square'}
|
15 |
+
label2id = {v: k for k, v in id2label.items()}
|
16 |
+
|
17 |
+
# Initialize glasses recommendations
|
18 |
+
glasses_recommendations = {
|
19 |
+
"Heart": "Frame Rimless",
|
20 |
+
"Oblong": "Frame Persegi Panjang",
|
21 |
+
"Oval": "Frame Bulat",
|
22 |
+
"Round": "Frame Kotak",
|
23 |
+
"Square": "Frame Oval"
|
24 |
+
}
|
25 |
+
|
26 |
+
# Glasses images should be in the repo (e.g., "glasses/Heart.jpg")
|
27 |
+
glasses_images = {
|
28 |
+
"Heart": "glasses/RimlessFrame.jpg",
|
29 |
+
"Oblong": "glasses/RectangleFrame.jpg",
|
30 |
+
"Oval": "glasses/RoundFrame.jpg",
|
31 |
+
"Round": "glasses/SquareFrame.jpg",
|
32 |
+
"Square": "glasses/OvalFrame.jpg"
|
33 |
+
}
|
34 |
+
|
35 |
+
# Load model
|
36 |
+
model_checkpoint = "microsoft/swin-tiny-patch4-window7-224"
|
37 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
38 |
+
|
39 |
+
model = SwinForImageClassification.from_pretrained(
|
40 |
+
model_checkpoint,
|
41 |
+
label2id=label2id,
|
42 |
+
id2label=id2label,
|
43 |
+
ignore_mismatched_sizes=True
|
44 |
+
)
|
45 |
+
|
46 |
+
# Load your fine-tuned model weights (uploaded into Space!)
|
47 |
+
model.load_state_dict(torch.load('LR-0001-adamW-32-64swin.pth', map_location=device), strict=False)
|
48 |
+
model = model.to(device)
|
49 |
+
model.eval()
|
50 |
+
|
51 |
+
# Initialize feature extractor
|
52 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_checkpoint)
|
53 |
+
|
54 |
+
# Initialize Mediapipe Face Detection
|
55 |
+
mp_face_detection = mp.solutions.face_detection.FaceDetection(model_selection=1, min_detection_confidence=0.5)
|
56 |
+
|
57 |
+
# Preprocess image
|
58 |
+
def preprocess_image(image):
|
59 |
+
image = np.array(image)
|
60 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
61 |
+
results = mp_face_detection.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
62 |
+
|
63 |
+
if results.detections:
|
64 |
+
detection = results.detections[0]
|
65 |
+
bbox = detection.location_data.relative_bounding_box
|
66 |
+
h, w, _ = image.shape
|
67 |
+
x1 = int(bbox.xmin * w)
|
68 |
+
y1 = int(bbox.ymin * h)
|
69 |
+
x2 = int((bbox.xmin + bbox.width) * w)
|
70 |
+
y2 = int((bbox.ymin + bbox.height) * h)
|
71 |
+
|
72 |
+
face = image[y1:y2, x1:x2]
|
73 |
+
else:
|
74 |
+
raise ValueError("No face detected in the image.")
|
75 |
+
|
76 |
+
face = cv2.resize(face, (224, 224))
|
77 |
+
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
|
78 |
+
pixel_values = feature_extractor(images=face, return_tensors="pt")['pixel_values']
|
79 |
+
|
80 |
+
return pixel_values.squeeze(0)
|
81 |
+
|
82 |
+
# Prediction
|
83 |
+
def predict(image):
|
84 |
+
try:
|
85 |
+
image_tensor = preprocess_image(image)
|
86 |
+
image_tensor = image_tensor.unsqueeze(0).to(device)
|
87 |
+
|
88 |
+
with torch.no_grad():
|
89 |
+
outputs = model(image_tensor)
|
90 |
+
logits = outputs.logits
|
91 |
+
probabilities = torch.nn.functional.softmax(logits, dim=1).squeeze(0)
|
92 |
+
sorted_probs = sorted([(id2label[i], probabilities[i].item() * 100) for i in range(len(probabilities))], key=lambda x: x[1], reverse=True)
|
93 |
+
|
94 |
+
predicted_label, predicted_prob = sorted_probs[0]
|
95 |
+
all_probs = {label: (f"{prob:.2f}%", glasses_recommendations[label]) for label, prob in sorted_probs}
|
96 |
+
|
97 |
+
# Prepare result text
|
98 |
+
result_text = f"Bentuk Wajah: {predicted_label} ({predicted_prob:.2f}%)\n\n"
|
99 |
+
result_text += "Probabilitas Setiap Kelas:\n"
|
100 |
+
for label, (prob, recommendation) in all_probs.items():
|
101 |
+
result_text += f"{label}: {prob} - Rekomendasi Kacamata: {recommendation}\n"
|
102 |
+
|
103 |
+
# Prepare glasses image
|
104 |
+
glasses_image_path = glasses_images.get(predicted_label, None)
|
105 |
+
glasses_img = None
|
106 |
+
if glasses_image_path and os.path.exists(glasses_image_path):
|
107 |
+
glasses_img = Image.open(glasses_image_path)
|
108 |
+
|
109 |
+
return result_text, glasses_img
|
110 |
+
|
111 |
+
except Exception as e:
|
112 |
+
return f"Error: {str(e)}", None
|
113 |
+
|
114 |
+
# Gradio Interface
|
115 |
+
demo = gr.Interface(
|
116 |
+
fn=predict,
|
117 |
+
inputs=gr.Image(type="pil"),
|
118 |
+
outputs=[gr.Textbox(label="Hasil Prediksi"), gr.Image(label="Rekomendasi Kacamata")],
|
119 |
+
title="Deteksi Bentuk Wajah & Rekomendasi Kacamata",
|
120 |
+
description="Upload gambar wajahmu untuk mendapatkan bentuk wajah dan rekomendasi kacamata!"
|
121 |
+
)
|
122 |
+
|
123 |
+
if __name__ == "__main__":
|
124 |
+
demo.launch()
|