Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -8,20 +8,18 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
8 |
MODEL_ID = "Qwen/Qwen2-1.5B-Instruct"
|
9 |
|
10 |
# --- Load Model and Tokenizer ---
|
11 |
-
# Note: Model loading happens when the Space starts.
|
12 |
-
# device_map="auto" will attempt to use the GPU when allocated by @spaces.GPU
|
13 |
print(f"Loading model: {MODEL_ID}")
|
14 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
16 |
MODEL_ID,
|
17 |
torch_dtype="auto",
|
18 |
-
device_map="auto"
|
19 |
)
|
20 |
print("Model loaded successfully.")
|
21 |
|
22 |
|
23 |
# --- Generation Function (Returns response and token count) ---
|
24 |
-
#
|
25 |
def generate_response(messages, max_length=512, temperature=0.7, top_p=0.9):
|
26 |
"""Generate a response and return it along with the number of generated tokens."""
|
27 |
num_generated_tokens = 0
|
@@ -31,8 +29,6 @@ def generate_response(messages, max_length=512, temperature=0.7, top_p=0.9):
|
|
31 |
tokenize=False,
|
32 |
add_generation_prompt=True
|
33 |
)
|
34 |
-
# Ensure model_inputs are sent to the correct device the model is on
|
35 |
-
# device_map='auto' handles this, but explicitly checking model.device is safer
|
36 |
device = model.device
|
37 |
model_inputs = tokenizer([prompt_text], return_tensors="pt").to(device)
|
38 |
input_ids_len = model_inputs.input_ids.shape[-1]
|
@@ -47,40 +43,48 @@ def generate_response(messages, max_length=512, temperature=0.7, top_p=0.9):
|
|
47 |
|
48 |
print("Generating response...")
|
49 |
with torch.no_grad():
|
50 |
-
# Generate response
|
51 |
generated_ids = model.generate(model_inputs.input_ids, **generation_kwargs)
|
52 |
|
53 |
-
# Calculate generated tokens
|
54 |
output_ids = generated_ids[0, input_ids_len:]
|
55 |
num_generated_tokens = len(output_ids)
|
56 |
-
|
57 |
response = tokenizer.decode(output_ids, skip_special_tokens=True)
|
58 |
print("Generation complete.")
|
59 |
return response.strip(), num_generated_tokens
|
60 |
|
61 |
except Exception as e:
|
62 |
print(f"Error during generation: {e}")
|
63 |
-
# Ensure error message is returned correctly even if tokens couldn't be counted
|
64 |
return f"An error occurred: {str(e)}", num_generated_tokens
|
65 |
|
66 |
-
# --- Input Processing Function (
|
67 |
-
@spaces.GPU #
|
68 |
def process_input(
|
|
|
69 |
player_stats,
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
73 |
max_length,
|
74 |
temperature,
|
75 |
top_p
|
76 |
):
|
77 |
-
"""Process inputs
|
78 |
-
print("GPU requested via decorator, starting processing
|
79 |
-
|
80 |
-
|
81 |
-
if
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
# Create the messages list
|
86 |
messages = []
|
@@ -92,7 +96,7 @@ def process_input(
|
|
92 |
start_time = time.time()
|
93 |
|
94 |
# Generate response from the model
|
95 |
-
response, generated_tokens = generate_response(
|
96 |
messages,
|
97 |
max_length=max_length,
|
98 |
temperature=temperature,
|
@@ -101,71 +105,139 @@ def process_input(
|
|
101 |
|
102 |
# --- Time Measurement End ---
|
103 |
end_time = time.time()
|
104 |
-
duration = round(end_time - start_time, 2)
|
105 |
|
106 |
# For display purposes
|
107 |
-
display_prompt = f"
|
108 |
|
109 |
-
print(f"Processing finished in {duration} seconds.")
|
110 |
# Return all results including time and tokens
|
111 |
return display_prompt, response, f"{duration} seconds", generated_tokens
|
112 |
|
113 |
-
# ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
-
|
116 |
-
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
2. **Determine Best Counter:** Identify the RPS move that directly beats the player's most frequent move (Rock beats Scissors, Scissors beats Paper, Paper beats Rock).
|
121 |
-
3. **Justify Recommendation:** Explain *why* this counter-move is statistically optimal. You can mention the expected outcome. For example: 'Playing Paper counters the player's most frequent move, Rock (40% frequency). This offers the highest probability of winning against the player's likely action.' Avoid irrelevant justifications based on the AI's own move frequencies.
|
122 |
-
4. **State Recommendation:** Clearly state the recommended move (Rock, Paper, or Scissors).
|
123 |
|
124 |
-
|
|
|
|
|
125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
DEFAULT_PLAYER_STATS = "Rock: 40%\nPaper: 30%\nScissors: 30%"
|
127 |
-
|
128 |
-
|
|
|
|
|
129 |
|
|
|
130 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
131 |
-
gr.Markdown(f"# {MODEL_ID} - RPS
|
132 |
-
gr.Markdown("Test model advice
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
with gr.Row():
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
info="Optionally, enter AI's own move frequencies."
|
143 |
-
)
|
144 |
-
user_query_input = gr.Textbox(
|
145 |
-
label="Your Query / Instruction", value=DEFAULT_USER_QUERY, lines=3,
|
146 |
-
info="Ask the specific question based on the stats."
|
147 |
-
)
|
148 |
-
system_prompt_input = gr.Textbox(
|
149 |
-
label="System Prompt", value=DEFAULT_SYSTEM_PROMPT,
|
150 |
-
lines=12
|
151 |
-
)
|
152 |
-
|
153 |
-
with gr.Column(scale=1): # Params/Output column
|
154 |
-
gr.Markdown("## Generation Parameters")
|
155 |
max_length_slider = gr.Slider(minimum=50, maximum=1024, value=300, step=16, label="Max New Tokens")
|
156 |
temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Temperature")
|
157 |
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top P")
|
158 |
-
submit_btn = gr.Button("Generate Response", variant="primary")
|
159 |
|
160 |
-
gr.Markdown("## Performance Metrics")
|
161 |
-
time_output = gr.Textbox(label="Generation Time", interactive=False)
|
162 |
-
tokens_output = gr.Number(label="Generated Tokens", interactive=False)
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
""")
|
170 |
|
171 |
with gr.Row():
|
@@ -176,21 +248,56 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
176 |
label="Model Response", lines=20, show_copy_button=True
|
177 |
)
|
178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
submit_btn.click(
|
180 |
process_input,
|
181 |
inputs=[
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
],
|
185 |
outputs=[
|
186 |
final_prompt_display, response_display,
|
187 |
time_output, tokens_output
|
188 |
],
|
189 |
-
api_name="
|
190 |
)
|
191 |
|
192 |
# --- Launch the demo ---
|
193 |
if __name__ == "__main__":
|
194 |
-
# Share=True
|
195 |
-
# but usually not needed when deployed on HF Spaces platform.
|
196 |
demo.launch()
|
|
|
8 |
MODEL_ID = "Qwen/Qwen2-1.5B-Instruct"
|
9 |
|
10 |
# --- Load Model and Tokenizer ---
|
|
|
|
|
11 |
print(f"Loading model: {MODEL_ID}")
|
12 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
13 |
model = AutoModelForCausalLM.from_pretrained(
|
14 |
MODEL_ID,
|
15 |
torch_dtype="auto",
|
16 |
+
device_map="auto"
|
17 |
)
|
18 |
print("Model loaded successfully.")
|
19 |
|
20 |
|
21 |
# --- Generation Function (Returns response and token count) ---
|
22 |
+
# No changes needed here
|
23 |
def generate_response(messages, max_length=512, temperature=0.7, top_p=0.9):
|
24 |
"""Generate a response and return it along with the number of generated tokens."""
|
25 |
num_generated_tokens = 0
|
|
|
29 |
tokenize=False,
|
30 |
add_generation_prompt=True
|
31 |
)
|
|
|
|
|
32 |
device = model.device
|
33 |
model_inputs = tokenizer([prompt_text], return_tensors="pt").to(device)
|
34 |
input_ids_len = model_inputs.input_ids.shape[-1]
|
|
|
43 |
|
44 |
print("Generating response...")
|
45 |
with torch.no_grad():
|
|
|
46 |
generated_ids = model.generate(model_inputs.input_ids, **generation_kwargs)
|
47 |
|
|
|
48 |
output_ids = generated_ids[0, input_ids_len:]
|
49 |
num_generated_tokens = len(output_ids)
|
|
|
50 |
response = tokenizer.decode(output_ids, skip_special_tokens=True)
|
51 |
print("Generation complete.")
|
52 |
return response.strip(), num_generated_tokens
|
53 |
|
54 |
except Exception as e:
|
55 |
print(f"Error during generation: {e}")
|
|
|
56 |
return f"An error occurred: {str(e)}", num_generated_tokens
|
57 |
|
58 |
+
# --- Input Processing Function (Adapts based on mode) ---
|
59 |
+
@spaces.GPU # Keep ZeroGPU decorator
|
60 |
def process_input(
|
61 |
+
analysis_mode, # New input: Mode selector
|
62 |
player_stats,
|
63 |
+
player_last_move,
|
64 |
+
markov_prediction_text,
|
65 |
+
system_prompt_freq, # Specific system prompt for frequency mode
|
66 |
+
system_prompt_markov, # Specific system prompt for markov mode
|
67 |
+
user_query, # User query might need slight adaptation based on mode
|
68 |
max_length,
|
69 |
temperature,
|
70 |
top_p
|
71 |
):
|
72 |
+
"""Process inputs based on selected analysis mode, generate response."""
|
73 |
+
print(f"GPU requested via decorator, starting processing in mode: {analysis_mode}")
|
74 |
+
|
75 |
+
# Select the appropriate system prompt and construct user content based on mode
|
76 |
+
if analysis_mode == "Frequency Only":
|
77 |
+
system_prompt = system_prompt_freq
|
78 |
+
user_content = f"Player Move Frequency Stats (Long-Term):\n{player_stats}\n\n"
|
79 |
+
user_content += f"User Query:\n{user_query}" # Query might need adjustment
|
80 |
+
elif analysis_mode == "Markov Prediction Only":
|
81 |
+
system_prompt = system_prompt_markov
|
82 |
+
user_content = f"Player's Last Move:\n{player_last_move}\n\n"
|
83 |
+
user_content += f"Predicted Next Move (Short-Term Markov Analysis):\n{markov_prediction_text}\n\n"
|
84 |
+
user_content += f"User Query:\n{user_query}" # Query might need adjustment
|
85 |
+
else:
|
86 |
+
# Default or error case
|
87 |
+
return "Invalid analysis mode selected.", "", "0 seconds", 0
|
88 |
|
89 |
# Create the messages list
|
90 |
messages = []
|
|
|
96 |
start_time = time.time()
|
97 |
|
98 |
# Generate response from the model
|
99 |
+
response, generated_tokens = generate_response( # Capture token count
|
100 |
messages,
|
101 |
max_length=max_length,
|
102 |
temperature=temperature,
|
|
|
105 |
|
106 |
# --- Time Measurement End ---
|
107 |
end_time = time.time()
|
108 |
+
duration = round(end_time - start_time, 2) # Calculate duration
|
109 |
|
110 |
# For display purposes
|
111 |
+
display_prompt = f"Selected Mode: {analysis_mode}\nSystem Prompt:\n{system_prompt}\n\n------\n\nUser Content:\n{user_content}"
|
112 |
|
113 |
+
print(f"Processing finished in {duration} seconds.")
|
114 |
# Return all results including time and tokens
|
115 |
return display_prompt, response, f"{duration} seconds", generated_tokens
|
116 |
|
117 |
+
# --- System Prompts ---
|
118 |
+
|
119 |
+
# Refined system prompt for Frequency Analysis
|
120 |
+
DEFAULT_SYSTEM_PROMPT_FREQ = """You are an assistant that analyzes Rock-Paper-Scissors (RPS) player statistics. Your ONLY goal is to find the best single AI move to counter the player's MOST frequent move based on the provided frequency stats.
|
121 |
+
|
122 |
+
Follow these steps EXACTLY. Do NOT deviate.
|
123 |
+
|
124 |
+
Step 1: Identify Player's Most Frequent Move.
|
125 |
+
- Look ONLY at the 'Player Move Frequency Stats'.
|
126 |
+
- List the percentages: Rock (%), Paper (%), Scissors (%).
|
127 |
+
- State which move name has the highest percentage number.
|
128 |
+
|
129 |
+
Step 2: Determine the Counter Move using RPS Rules.
|
130 |
+
- REMEMBER THE RULES: Paper beats Rock. Rock beats Scissors. Scissors beats Paper.
|
131 |
+
- Based *only* on the move identified in Step 1, state the single move name that beats it according to the rules. State the rule you used (e.g., "Paper beats Rock").
|
132 |
+
|
133 |
+
Step 3: Explain the Counter Choice.
|
134 |
+
- Briefly state: "Playing [Counter Move from Step 2] is recommended because it directly beats the player's most frequent move, [Most Frequent Move from Step 1]."
|
135 |
+
|
136 |
+
Step 4: State Final Recommendation.
|
137 |
+
- State *only* the recommended AI move name from Step 2. Example: "Recommendation: Paper"
|
138 |
|
139 |
+
Base your analysis strictly on the provided frequencies and the stated RPS rules.
|
140 |
+
"""
|
141 |
|
142 |
+
# New system prompt for Markov Analysis
|
143 |
+
DEFAULT_SYSTEM_PROMPT_MARKOV = """You are an assistant that analyzes Rock-Paper-Scissors (RPS) short-term player patterns. Your ONLY goal is to find the best single AI move to counter the player's PREDICTED next move, based on their LAST move.
|
|
|
|
|
|
|
144 |
|
145 |
+
Information Provided:
|
146 |
+
1. **Player's Last Move:** The actual move the player just made.
|
147 |
+
2. **Predicted Next Move (Short-Term Markov Analysis):** The player's statistically most likely *next* move based on their *last* move.
|
148 |
|
149 |
+
Follow these steps EXACTLY:
|
150 |
+
|
151 |
+
Step 1: Identify Predicted Player Move.
|
152 |
+
- Look at the 'Predicted Next Move (Short-Term Markov Analysis)' text.
|
153 |
+
- State the player's predicted next move (Rock, Paper, or Scissors). Note the probability if provided.
|
154 |
+
|
155 |
+
Step 2: Determine Counter Move using RPS Rules.
|
156 |
+
- REMEMBER THE RULES: Paper beats Rock. Rock beats Scissors. Scissors beats Paper.
|
157 |
+
- Based *only* on the predicted move identified in Step 1, state the single AI move name that beats it. State the rule used (e.g., "Rock beats Scissors").
|
158 |
+
|
159 |
+
Step 3: Explain the Counter Choice.
|
160 |
+
- Briefly state: "Playing [Counter Move from Step 2] is recommended because it directly beats the player's predicted next move, [Predicted Move from Step 1]."
|
161 |
+
|
162 |
+
Step 4: State Final Recommendation.
|
163 |
+
- State *only* the recommended AI move name from Step 2. Example: "Recommendation: Rock"
|
164 |
+
|
165 |
+
Base your analysis strictly on the provided prediction and the standard RPS rules.
|
166 |
+
"""
|
167 |
+
|
168 |
+
# --- Default Input Values ---
|
169 |
DEFAULT_PLAYER_STATS = "Rock: 40%\nPaper: 30%\nScissors: 30%"
|
170 |
+
DEFAULT_PLAYER_LAST_MOVE = "Rock"
|
171 |
+
DEFAULT_MARKOV_PREDICTION = "Based on the last move (Rock), the player's most likely next move is Paper (60% probability)."
|
172 |
+
# Default query might need to be generic or adapted based on mode
|
173 |
+
DEFAULT_USER_QUERY = "Based on the provided information for the selected analysis mode, what single move should the AI make next? Explain your reasoning step-by-step as instructed."
|
174 |
|
175 |
+
# --- Gradio Interface ---
|
176 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
177 |
+
gr.Markdown(f"# {MODEL_ID} - RPS Strategy Tester")
|
178 |
+
gr.Markdown("Test model advice using either Frequency Stats OR Short-Term (Markov) Predictions.")
|
179 |
+
|
180 |
+
# Mode Selector
|
181 |
+
analysis_mode_selector = gr.Radio(
|
182 |
+
label="Select Analysis Mode",
|
183 |
+
choices=["Frequency Only", "Markov Prediction Only"],
|
184 |
+
value="Frequency Only" # Default mode
|
185 |
+
)
|
186 |
|
187 |
+
# Input Sections (conditionally visible)
|
188 |
+
with gr.Group(visible=True) as frequency_inputs: # Visible by default
|
189 |
+
gr.Markdown("### Frequency Analysis Inputs")
|
190 |
+
player_stats_input = gr.Textbox(
|
191 |
+
label="Player Move Frequency Stats (Long-Term)", value=DEFAULT_PLAYER_STATS, lines=4,
|
192 |
+
info="Overall player move distribution."
|
193 |
+
)
|
194 |
+
# Hidden system prompt for frequency mode (can be edited if needed)
|
195 |
+
system_prompt_freq_input = gr.Textbox(
|
196 |
+
label="System Prompt (Frequency Mode - Edit if needed)", value=DEFAULT_SYSTEM_PROMPT_FREQ, lines=15, visible=False # Hidden by default, but can be shown for advanced editing
|
197 |
+
)
|
198 |
+
|
199 |
+
with gr.Group(visible=False) as markov_inputs: # Hidden by default
|
200 |
+
gr.Markdown("### Markov Prediction Analysis Inputs")
|
201 |
+
player_last_move_input = gr.Dropdown( # Dropdown is good for defined choices
|
202 |
+
label="Player's Last Move", choices=["Rock", "Paper", "Scissors"], value=DEFAULT_PLAYER_LAST_MOVE,
|
203 |
+
info="The player's most recent actual move."
|
204 |
+
)
|
205 |
+
markov_prediction_input = gr.Textbox(
|
206 |
+
label="Predicted Next Move (Short-Term Markov Analysis)", value=DEFAULT_MARKOV_PREDICTION, lines=3,
|
207 |
+
info="Provide the pre-calculated prediction based on the last move (e.g., 'Player likely plays Paper (60%)')."
|
208 |
+
)
|
209 |
+
# Hidden system prompt for markov mode (can be edited if needed)
|
210 |
+
system_prompt_markov_input = gr.Textbox(
|
211 |
+
label="System Prompt (Markov Mode - Edit if needed)", value=DEFAULT_SYSTEM_PROMPT_MARKOV, lines=15, visible=False # Hidden by default
|
212 |
+
)
|
213 |
+
|
214 |
+
# General Inputs / Parameters / Outputs
|
215 |
with gr.Row():
|
216 |
+
with gr.Column(scale=2):
|
217 |
+
user_query_input = gr.Textbox(
|
218 |
+
label="Your Query / Instruction", value=DEFAULT_USER_QUERY, lines=3,
|
219 |
+
info="Ask the specific question based on the selected mode's analysis."
|
220 |
+
)
|
221 |
+
with gr.Column(scale=1):
|
222 |
+
gr.Markdown("#### Generation Parameters")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
max_length_slider = gr.Slider(minimum=50, maximum=1024, value=300, step=16, label="Max New Tokens")
|
224 |
temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Temperature")
|
225 |
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top P")
|
|
|
226 |
|
|
|
|
|
|
|
227 |
|
228 |
+
submit_btn = gr.Button("Generate Response", variant="primary")
|
229 |
+
|
230 |
+
with gr.Row():
|
231 |
+
with gr.Column():
|
232 |
+
gr.Markdown("#### Performance Metrics")
|
233 |
+
time_output = gr.Textbox(label="Generation Time", interactive=False)
|
234 |
+
tokens_output = gr.Number(label="Generated Tokens", interactive=False) # Use Number for token count
|
235 |
+
with gr.Column():
|
236 |
+
gr.Markdown("""
|
237 |
+
#### Testing Tips
|
238 |
+
- Select the desired **Analysis Mode**.
|
239 |
+
- Fill in the inputs for the **selected mode only**.
|
240 |
+
- Use low **Temperature** for factual analysis.
|
241 |
""")
|
242 |
|
243 |
with gr.Row():
|
|
|
248 |
label="Model Response", lines=20, show_copy_button=True
|
249 |
)
|
250 |
|
251 |
+
# --- Event Handlers ---
|
252 |
+
|
253 |
+
# Function to update UI visibility based on mode selection
|
254 |
+
def update_ui_visibility(mode):
|
255 |
+
if mode == "Frequency Only":
|
256 |
+
return {
|
257 |
+
frequency_inputs: gr.update(visible=True),
|
258 |
+
markov_inputs: gr.update(visible=False)
|
259 |
+
}
|
260 |
+
elif mode == "Markov Prediction Only":
|
261 |
+
return {
|
262 |
+
frequency_inputs: gr.update(visible=False),
|
263 |
+
markov_inputs: gr.update(visible=True)
|
264 |
+
}
|
265 |
+
else: # Default case
|
266 |
+
return {
|
267 |
+
frequency_inputs: gr.update(visible=True),
|
268 |
+
markov_inputs: gr.update(visible=False)
|
269 |
+
}
|
270 |
+
|
271 |
+
# Link the radio button change to the UI update function
|
272 |
+
analysis_mode_selector.change(
|
273 |
+
fn=update_ui_visibility,
|
274 |
+
inputs=analysis_mode_selector,
|
275 |
+
outputs=[frequency_inputs, markov_inputs] # Components to update
|
276 |
+
)
|
277 |
+
|
278 |
+
# Handle button click - Pass all inputs, function will select based on mode
|
279 |
submit_btn.click(
|
280 |
process_input,
|
281 |
inputs=[
|
282 |
+
analysis_mode_selector, # Mode selector first
|
283 |
+
player_stats_input,
|
284 |
+
player_last_move_input,
|
285 |
+
markov_prediction_input,
|
286 |
+
system_prompt_freq_input, # Pass both system prompts
|
287 |
+
system_prompt_markov_input,
|
288 |
+
user_query_input,
|
289 |
+
max_length_slider,
|
290 |
+
temperature_slider,
|
291 |
+
top_p_slider
|
292 |
],
|
293 |
outputs=[
|
294 |
final_prompt_display, response_display,
|
295 |
time_output, tokens_output
|
296 |
],
|
297 |
+
api_name="generate_rps_selectable_analysis" # Updated api_name
|
298 |
)
|
299 |
|
300 |
# --- Launch the demo ---
|
301 |
if __name__ == "__main__":
|
302 |
+
# Share=True might be needed for ZeroGPU if running locally for testing
|
|
|
303 |
demo.launch()
|