RPS_game_assist / app.py
rui3000's picture
Update app.py
fce68ad verified
raw
history blame
12.3 kB
import gradio as gr
import torch
import time
import spaces # Import the spaces library
from transformers import AutoModelForCausalLM, AutoTokenizer
# --- Configuration ---
MODEL_ID = "Qwen/Qwen2.5-Math-1.5B" # Replace with actual ID if found
# --- Load Model and Tokenizer ---
print(f"Loading model: {MODEL_ID}")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype="auto",
device_map="auto"
)
print("Model loaded successfully.")
# --- Generation Function (Returns response and token count) ---
# No changes needed here
def generate_response(messages, max_length=512, temperature=0.7, top_p=0.9):
"""Generate a response and return it along with the number of generated tokens."""
num_generated_tokens = 0
try:
prompt_text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
device = model.device
model_inputs = tokenizer([prompt_text], return_tensors="pt").to(device)
input_ids_len = model_inputs.input_ids.shape[-1]
generation_kwargs = {
"max_new_tokens": max_length,
"temperature": temperature,
"top_p": top_p,
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
}
print("Generating response...")
with torch.no_grad():
generated_ids = model.generate(model_inputs.input_ids, **generation_kwargs)
output_ids = generated_ids[0, input_ids_len:]
num_generated_tokens = len(output_ids)
response = tokenizer.decode(output_ids, skip_special_tokens=True)
print("Generation complete.")
return response.strip(), num_generated_tokens
except Exception as e:
print(f"Error during generation: {e}")
return f"An error occurred: {str(e)}", num_generated_tokens
# --- Input Processing Function (Takes single system prompt) ---
@spaces.GPU # Keep ZeroGPU decorator
def process_input(
analysis_mode, # Mode selector
player_stats,
player_last_move,
markov_prediction_text,
system_prompt, # Single system prompt from UI
user_query,
max_length,
temperature,
top_p
):
"""Process inputs based on selected analysis mode using the provided system prompt."""
print(f"GPU requested via decorator, starting processing in mode: {analysis_mode}")
# Construct user content based on mode
if analysis_mode == "Frequency Only":
user_content = f"Player Move Frequency Stats (Long-Term):\n{player_stats}\n\n"
user_content += f"User Query:\n{user_query}"
elif analysis_mode == "Markov Prediction Only":
user_content = f"Player's Last Move:\n{player_last_move}\n\n"
user_content += f"Predicted Next Move (Short-Term Markov Analysis):\n{markov_prediction_text}\n\n"
user_content += f"User Query:\n{user_query}"
else:
return "Invalid analysis mode selected.", "", "0 seconds", 0
# Create the messages list using the system_prompt from the UI
messages = []
if system_prompt and system_prompt.strip():
messages.append({"role": "system", "content": system_prompt})
messages.append({"role": "user", "content": user_content})
# --- Time Measurement Start ---
start_time = time.time()
# Generate response from the model
response, generated_tokens = generate_response(
messages,
max_length=max_length,
temperature=temperature,
top_p=top_p
)
# --- Time Measurement End ---
end_time = time.time()
duration = round(end_time - start_time, 2)
# For display purposes
display_prompt = f"Selected Mode: {analysis_mode}\nSystem Prompt:\n{system_prompt}\n\n------\n\nUser Content:\n{user_content}"
print(f"Processing finished in {duration} seconds.")
# Return all results including time and tokens
return display_prompt, response, f"{duration} seconds", generated_tokens
# --- System Prompts (Defaults only, UI will hold the editable version) ---
DEFAULT_SYSTEM_PROMPT_FREQ = """You are an assistant that analyzes Rock-Paper-Scissors (RPS) player statistics. Your ONLY goal is to find the best single AI move to counter the player's MOST frequent move based on the provided frequency stats.
Follow these steps EXACTLY. Do NOT deviate.
Step 1: Identify Player's Most Frequent Move.
- Look ONLY at the 'Player Move Frequency Stats'.
- List the percentages: Rock (%), Paper (%), Scissors (%).
- State which move name has the highest percentage number.
Step 2: Determine the Counter Move using RPS Rules.
- REMEMBER THE RULES: Paper beats Rock. Rock beats Scissors. Scissors beats Paper.
- Based *only* on the move identified in Step 1, state the single move name that beats it according to the rules. State the rule you used (e.g., "Paper beats Rock").
Step 3: Explain the Counter Choice.
- Briefly state: "Playing [Counter Move from Step 2] is recommended because it directly beats the player's most frequent move, [Most Frequent Move from Step 1]."
Step 4: State Final Recommendation.
- State *only* the recommended AI move name from Step 2. Example: "Recommendation: Paper"
Base your analysis strictly on the provided frequencies and the stated RPS rules.
"""
# *** UPDATED Markov System Prompt v2 ***
DEFAULT_SYSTEM_PROMPT_MARKOV = """You are an RPS assistant using short-term pattern analysis (Markov prediction).
Your ONLY task is to recommend the AI move that beats the player's PREDICTED next move. Accuracy is critical.
Input Information Provided:
- Player's Predicted Next Move (from Markov analysis): [This is the key input!]
Instructions:
1. **Identify Prediction:** State the player's PREDICTED next move (Rock, Paper, or Scissors) based *only* on the 'Predicted Next Move' input.
2. **Find Counter:** Apply the RPS rules (Paper beats Rock, Rock beats Scissors, Scissors beats Paper). Determine the single move that correctly beats the PREDICTED move from Step 1. State *only* the name of this counter move. Double-check the rules.
3. **Recommend:** Clearly state the counter move found in Step 2 as the AI's recommended move.
Example Output Format:
1. Predicted Player Move: [Predicted move name]
2. Counter Move: [Counter move name]
3. Recommendation: Play [Counter move name].
"""
# --- Default Input Values ---
DEFAULT_PLAYER_STATS = "Rock: 40%\nPaper: 30%\nScissors: 30%"
DEFAULT_PLAYER_LAST_MOVE = "Rock"
DEFAULT_MARKOV_PREDICTION = "Based on the last move (Rock), the player's most likely next move is Paper (60% probability)."
DEFAULT_USER_QUERY = "Based on the provided information for the selected analysis mode, what single move should the AI make next? Explain your reasoning step-by-step as instructed."
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(f"# {MODEL_ID} - RPS Strategy Tester")
gr.Markdown("Test model advice using either Frequency Stats OR Short-Term (Markov) Predictions.")
# Mode Selector
analysis_mode_selector = gr.Radio(
label="Select Analysis Mode",
choices=["Frequency Only", "Markov Prediction Only"],
value="Frequency Only" # Default mode
)
# --- Visible System Prompt Textbox ---
system_prompt_input = gr.Textbox(
label="System Prompt (Edit based on selected mode)",
value=DEFAULT_SYSTEM_PROMPT_FREQ, # Start with frequency prompt
lines=15
)
# Input Sections (conditionally visible)
with gr.Group(visible=True) as frequency_inputs: # Visible by default
gr.Markdown("### Frequency Analysis Inputs")
player_stats_input = gr.Textbox(
label="Player Move Frequency Stats (Long-Term)", value=DEFAULT_PLAYER_STATS, lines=4,
info="Overall player move distribution."
)
with gr.Group(visible=False) as markov_inputs: # Hidden by default
gr.Markdown("### Markov Prediction Analysis Inputs")
player_last_move_input = gr.Dropdown(
label="Player's Last Move", choices=["Rock", "Paper", "Scissors"], value=DEFAULT_PLAYER_LAST_MOVE,
info="The player's most recent actual move."
)
markov_prediction_input = gr.Textbox(
label="Predicted Next Move (Short-Term Markov Analysis)", value=DEFAULT_MARKOV_PREDICTION, lines=3,
info="Provide the pre-calculated prediction based on the last move (e.g., 'Player likely plays Paper (60%)')."
)
# General Inputs / Parameters / Outputs
with gr.Row():
with gr.Column(scale=2):
user_query_input = gr.Textbox(
label="Your Query / Instruction", value=DEFAULT_USER_QUERY, lines=3,
info="Ask the specific question based on the selected mode's analysis."
)
with gr.Column(scale=1):
gr.Markdown("#### Generation Parameters")
max_length_slider = gr.Slider(minimum=50, maximum=1024, value=300, step=16, label="Max New Tokens")
temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Temperature")
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top P")
submit_btn = gr.Button("Generate Response", variant="primary")
with gr.Row():
with gr.Column():
gr.Markdown("#### Performance Metrics")
time_output = gr.Textbox(label="Generation Time", interactive=False)
tokens_output = gr.Number(label="Generated Tokens", interactive=False)
with gr.Column():
gr.Markdown("""
#### Testing Tips
- Select the desired **Analysis Mode**.
- Fill in the inputs for the **selected mode only**.
- **Edit the System Prompt** above as needed for testing.
- Use low **Temperature** for factual analysis.
""")
with gr.Row():
final_prompt_display = gr.Textbox(
label="Formatted Input Sent to Model (via Chat Template)", lines=20
)
response_display = gr.Textbox(
label="Model Response", lines=20, show_copy_button=True
)
# --- Event Handlers ---
# Function to update UI visibility AND system prompt content based on mode selection
def update_ui_visibility_and_prompt(mode):
if mode == "Frequency Only":
return {
frequency_inputs: gr.update(visible=True),
markov_inputs: gr.update(visible=False),
system_prompt_input: gr.update(value=DEFAULT_SYSTEM_PROMPT_FREQ) # Load Frequency prompt
}
elif mode == "Markov Prediction Only":
return {
frequency_inputs: gr.update(visible=False),
markov_inputs: gr.update(visible=True),
system_prompt_input: gr.update(value=DEFAULT_SYSTEM_PROMPT_MARKOV) # Load Markov prompt
}
else: # Default case
return {
frequency_inputs: gr.update(visible=True),
markov_inputs: gr.update(visible=False),
system_prompt_input: gr.update(value=DEFAULT_SYSTEM_PROMPT_FREQ)
}
# Link the radio button change to the UI update function
analysis_mode_selector.change(
fn=update_ui_visibility_and_prompt, # Use the combined update function
inputs=analysis_mode_selector,
outputs=[frequency_inputs, markov_inputs, system_prompt_input] # Components to update
)
# Handle button click - Pass the single visible system prompt
submit_btn.click(
process_input,
inputs=[
analysis_mode_selector,
player_stats_input,
player_last_move_input,
markov_prediction_input,
system_prompt_input, # Pass the visible system prompt textbox
user_query_input,
max_length_slider,
temperature_slider,
top_p_slider
],
outputs=[
final_prompt_display, response_display,
time_output, tokens_output
],
api_name="generate_rps_selectable_analysis_v2" # Updated api_name
)
# --- Launch the demo ---
if __name__ == "__main__":
demo.launch()