RPS_game_assist / app.py
rui3000's picture
Update app.py
24a51a6 verified
raw
history blame
8.4 kB
import gradio as gr
import torch
import time # Import time module
from transformers import AutoModelForCausalLM, AutoTokenizer
# --- Configuration ---
MODEL_ID = "Qwen/Qwen2-1.5B-Instruct"
# --- Load Model and Tokenizer ---
print(f"Loading model: {MODEL_ID}")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype="auto",
device_map="auto"
)
print("Model loaded successfully.")
# --- Generation Function (Updated to return token count) ---
def generate_response(messages, max_length=512, temperature=0.7, top_p=0.9):
"""Generate a response and return it along with the number of generated tokens."""
num_generated_tokens = 0
try:
prompt_text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([prompt_text], return_tensors="pt").to(model.device)
input_ids_len = model_inputs.input_ids.shape[-1] # Length of input tokens
generation_kwargs = {
"max_new_tokens": max_length,
"temperature": temperature,
"top_p": top_p,
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
}
print("Generating response...")
with torch.no_grad():
# Generate response - Ensure output_scores or similar isn't needed if just counting
generated_ids = model.generate(model_inputs.input_ids, **generation_kwargs)
# Calculate generated tokens
output_ids = generated_ids[0, input_ids_len:]
num_generated_tokens = len(output_ids)
response = tokenizer.decode(output_ids, skip_special_tokens=True)
print("Generation complete.")
return response.strip(), num_generated_tokens # Return response and token count
except Exception as e:
print(f"Error during generation: {e}")
return f"An error occurred: {str(e)}", num_generated_tokens # Return error and token count
# --- Input Processing Function (Updated for Time/Token outputs) ---
def process_input(
player_stats,
ai_stats,
system_prompt,
user_query,
max_length,
temperature,
top_p
):
"""Process inputs, generate response, and return display info, response, time, and token count."""
# Construct the user message content
user_content = f"Player Move Frequency Stats:\n{player_stats}\n\n"
if ai_stats and ai_stats.strip():
user_content += f"AI Move Frequency Stats:\n{ai_stats}\n\n"
user_content += f"User Query:\n{user_query}"
# Create the messages list
messages = []
if system_prompt and system_prompt.strip():
messages.append({"role": "system", "content": system_prompt})
messages.append({"role": "user", "content": user_content})
# --- Time Measurement Start ---
start_time = time.time()
# Generate response from the model
response, generated_tokens = generate_response( # Capture token count
messages,
max_length=max_length,
temperature=temperature,
top_p=top_p
)
# --- Time Measurement End ---
end_time = time.time()
duration = round(end_time - start_time, 2) # Calculate duration
# For display purposes
display_prompt = f"System Prompt (if used):\n{system_prompt}\n\n------\n\nUser Content:\n{user_content}"
# Return all results including time and tokens
return display_prompt, response, f"{duration} seconds", generated_tokens
# --- Gradio Interface (Added Time/Token displays, refined System Prompt) ---
# Refined default system prompt for better reasoning
DEFAULT_SYSTEM_PROMPT = """You are an expert Rock-Paper-Scissors (RPS) strategist focusing on statistical analysis.
Your task is to recommend the optimal AI move based *only* on the provided move frequency statistics for the player.
Follow these steps:
1. **Identify Player's Most Frequent Move:** Note the move (Rock, Paper, or Scissors) the player uses most often according to the stats.
2. **Determine Best Counter:** Identify the RPS move that directly beats the player's most frequent move (Rock beats Scissors, Scissors beats Paper, Paper beats Rock).
3. **Justify Recommendation:** Explain *why* this counter-move is statistically optimal. You can mention the expected outcome. For example: 'Playing Paper counters the player's most frequent move, Rock (40% frequency). This offers the highest probability of winning against the player's likely action.' Avoid irrelevant justifications based on the AI's own move frequencies.
4. **State Recommendation:** Clearly state the recommended move (Rock, Paper, or Scissors).
Base your analysis strictly on the provided frequencies and standard RPS rules."""
# Default example stats and query
DEFAULT_PLAYER_STATS = "Rock: 40%\nPaper: 30%\nScissors: 30%"
DEFAULT_AI_STATS = "" # Keep AI stats optional and clear by default
DEFAULT_USER_QUERY = "Based *only* on the player's move frequencies, what single move should the AI make next to maximize its statistical chance of winning? Explain your reasoning clearly step-by-step as instructed."
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(f"# {MODEL_ID} - RPS Frequency Analysis Tester")
gr.Markdown("Test model advice based on Player/AI move frequencies. Includes Generation Time and Token Count.")
with gr.Row():
with gr.Column(scale=2): # Input column
player_stats_input = gr.Textbox(
label="Player Move Frequency Stats", value=DEFAULT_PLAYER_STATS, lines=4,
info="Enter player's move frequencies (e.g., Rock: 50%, Paper: 30%, Scissors: 20%)."
)
ai_stats_input = gr.Textbox(
label="AI Move Frequency Stats (Optional)", value=DEFAULT_AI_STATS, lines=4,
info="Optionally, enter AI's own move frequencies."
)
user_query_input = gr.Textbox(
label="Your Query / Instruction", value=DEFAULT_USER_QUERY, lines=3,
info="Ask the specific question based on the stats."
)
system_prompt_input = gr.Textbox(
label="System Prompt", value=DEFAULT_SYSTEM_PROMPT, # Set default value
lines=12 # Adjusted lines
)
with gr.Column(scale=1): # Params/Output column
gr.Markdown("## Generation Parameters")
max_length_slider = gr.Slider(minimum=50, maximum=1024, value=300, step=16, label="Max New Tokens")
temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Temperature") # Lowered default further
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top P")
submit_btn = gr.Button("Generate Response", variant="primary")
gr.Markdown("## Performance Metrics")
# Outputs for Time and Tokens
time_output = gr.Textbox(label="Generation Time", interactive=False)
tokens_output = gr.Number(label="Generated Tokens", interactive=False) # Use Number for token count
gr.Markdown("""
## Testing Tips
- Focus on player stats for optimal counter strategy.
- Use the refined **System Prompt** for better reasoning guidance.
- Lower **Temperature** encourages more direct, statistical answers.
""")
with gr.Row():
# Display final prompt and model response (side-by-side)
final_prompt_display = gr.Textbox(
label="Formatted Input Sent to Model (via Chat Template)", lines=20 # Increased lines
)
response_display = gr.Textbox(
label="Model Response", lines=20, show_copy_button=True # Increased lines
)
# Handle button click - Updated inputs and outputs list
submit_btn.click(
process_input,
inputs=[
player_stats_input, ai_stats_input, system_prompt_input,
user_query_input, max_length_slider, temperature_slider, top_p_slider
],
outputs=[
final_prompt_display, response_display,
time_output, tokens_output # Added new outputs
],
api_name="generate_rps_frequency_analysis_v2" # Updated api_name
)
# --- Launch the demo ---
if __name__ == "__main__":
demo.launch()