Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,731 Bytes
699d672 3b34d1e d54daef 699d672 23a7862 699d672 23a7862 3b34d1e 23a7862 3b34d1e 699d672 23a7862 3b34d1e 23a7862 3b34d1e 23a7862 3b34d1e 23a7862 3b34d1e 23a7862 3b34d1e 9c848ec 23a7862 3b34d1e 23a7862 3b34d1e 23a7862 3b34d1e 23a7862 3b34d1e 23a7862 3b34d1e 23a7862 3b34d1e 23a7862 699d672 23a7862 699d672 3b34d1e 23a7862 3b34d1e 23a7862 3b34d1e 23a7862 699d672 23a7862 3b34d1e 23a7862 3b34d1e 699d672 23a7862 699d672 23a7862 699d672 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the Qwen2 0.5B model
model_id = "Qwen/Qwen2-0.5B"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
def generate_response(prompt, max_length=512, temperature=0.7, top_p=0.9):
"""Generate a response from the Qwen2 model based on the input prompt."""
# Tokenize the input prompt
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate response
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_length,
do_sample=True,
temperature=temperature,
top_p=top_p,
)
# Decode the response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the model's response (remove the input prompt)
if prompt in response:
response = response[len(prompt):]
return response.strip()
def process_input(
raw_prompt,
game_stats_template,
template_type,
max_length,
temperature,
top_p
):
"""Process the input and template to create the final prompt for the model."""
final_prompt = ""
if template_type == "Raw Prompt Only":
final_prompt = raw_prompt
elif template_type == "Template + Prompt":
final_prompt = f"{game_stats_template}\n\n{raw_prompt}"
elif template_type == "Custom Format":
final_prompt = f"{game_stats_template}\n\nBased on the game statistics above, {raw_prompt}"
# Generate response from the model
response = generate_response(
final_prompt,
max_length=max_length,
temperature=temperature,
top_p=top_p
)
return final_prompt, response
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Qwen2 0.5B Game Analysis Tester")
gr.Markdown("Use this interface to test how the Qwen2 0.5B model responds to different prompts about your game statistics.")
with gr.Row():
with gr.Column():
template_type = gr.Radio(
["Raw Prompt Only", "Template + Prompt", "Custom Format"],
label="Prompt Template Type",
value="Template + Prompt"
)
game_stats_template = gr.Textbox(
label="Game Statistics Template",
placeholder="Enter your game statistics here (scores, round history, etc.)",
lines=10
)
raw_prompt = gr.Textbox(
label="Prompt",
placeholder="What do you want the model to analyze or respond to?",
lines=3
)
with gr.Row():
max_length = gr.Slider(
minimum=50,
maximum=1024,
value=256,
step=1,
label="Max Response Length"
)
temperature = gr.Slider(
minimum=0.1,
maximum=1.5,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.1,
label="Top P"
)
submit_btn = gr.Button("Generate Response")
with gr.Column():
final_prompt_display = gr.Textbox(
label="Final Prompt Sent to Model",
lines=10
)
response_display = gr.Textbox(
label="Model Response",
lines=15
)
submit_btn.click(
process_input,
inputs=[
raw_prompt,
game_stats_template,
template_type,
max_length,
temperature,
top_p
],
outputs=[final_prompt_display, response_display]
)
gr.Markdown("""
## Tips for Testing
1. Start with simple prompts to gauge the model's basic understanding
2. Gradually increase complexity to find the model's limitations
3. Try different prompt formats to see which works best
4. Experiment with temperature and top_p to find optimal settings
5. Document which prompts work well as candidates for fine-tuning
""")
# Launch the demo
demo.launch() |