Spaces:
Runtime error
Runtime error
Commit
·
ac7bed8
1
Parent(s):
a5b9de2
Add app.py
Browse files
app.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %% [markdown]
|
2 |
+
# # 🖼️ Tiny Stable Diffusion (CPU Version)
|
3 |
+
# **0.9GB Model | No GPU Required**
|
4 |
+
|
5 |
+
# %% [markdown]
|
6 |
+
# ## 1. Install Requirements
|
7 |
+
!pip install -q torch diffusers transformers pillow huggingface_hub
|
8 |
+
import torch
|
9 |
+
from diffusers import StableDiffusionPipeline
|
10 |
+
from huggingface_hub import snapshot_download
|
11 |
+
from PIL import Image
|
12 |
+
import gradio as gr
|
13 |
+
import os
|
14 |
+
|
15 |
+
# Force CPU mode
|
16 |
+
torch.backends.quantized.engine = 'qnnpack' # ARM optimization
|
17 |
+
device = torch.device("cpu")
|
18 |
+
|
19 |
+
# %% [markdown]
|
20 |
+
# ## 2. Download Model (0.9GB)
|
21 |
+
model_path = "./tiny_model"
|
22 |
+
os.makedirs(model_path, exist_ok=True)
|
23 |
+
|
24 |
+
# Download with progress bar
|
25 |
+
print("Downloading model... (this may take a few minutes)")
|
26 |
+
snapshot_download(
|
27 |
+
repo_id="nota-ai/bk-sdm-tiny",
|
28 |
+
local_dir=model_path,
|
29 |
+
ignore_patterns=["*.bin", "*.fp16*", "*.onnx"],
|
30 |
+
local_dir_use_symlinks=False
|
31 |
+
)
|
32 |
+
|
33 |
+
# Verify download
|
34 |
+
if not os.listdir(model_path):
|
35 |
+
raise ValueError("Model failed to download! Check internet connection")
|
36 |
+
else:
|
37 |
+
print("✔ Model downloaded successfully")
|
38 |
+
|
39 |
+
# %% [markdown]
|
40 |
+
# ## 3. Load Optimized Pipeline
|
41 |
+
print("Loading model...")
|
42 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
43 |
+
model_path,
|
44 |
+
torch_dtype=torch.float32,
|
45 |
+
safety_checker=None,
|
46 |
+
requires_safety_checker=False
|
47 |
+
).to(device)
|
48 |
+
|
49 |
+
# Memory optimizations
|
50 |
+
pipe.enable_attention_slicing()
|
51 |
+
pipe.unet = torch.compile(pipe.unet) # Compile for faster inference
|
52 |
+
|
53 |
+
# %% [markdown]
|
54 |
+
# ## 4. Generation Function
|
55 |
+
def generate_image(prompt, steps=15, seed=42):
|
56 |
+
generator = torch.Generator(device).manual_seed(seed)
|
57 |
+
|
58 |
+
print(f"Generating: {prompt}")
|
59 |
+
image = pipe(
|
60 |
+
prompt,
|
61 |
+
num_inference_steps=steps,
|
62 |
+
guidance_scale=7.0,
|
63 |
+
generator=generator,
|
64 |
+
width=256,
|
65 |
+
height=256
|
66 |
+
).images[0]
|
67 |
+
|
68 |
+
return image
|
69 |
+
|
70 |
+
# %% [markdown]
|
71 |
+
# ## 5. Gradio Interface
|
72 |
+
with gr.Blocks(title="Tiny Diffusion (CPU)", css="footer {visibility: hidden}") as demo:
|
73 |
+
gr.Markdown("## 🎨 CPU Image Generator (0.9GB Model)")
|
74 |
+
with gr.Row():
|
75 |
+
prompt = gr.Textbox(label="Prompt",
|
76 |
+
value="a cute robot wearing a hat",
|
77 |
+
placeholder="Describe your image...")
|
78 |
+
with gr.Row():
|
79 |
+
steps = gr.Slider(5, 25, value=15, label="Steps")
|
80 |
+
seed = gr.Number(42, label="Seed")
|
81 |
+
with gr.Row():
|
82 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
83 |
+
with gr.Row():
|
84 |
+
output = gr.Image(label="Output", width=256, height=256)
|
85 |
+
|
86 |
+
generate_btn.click(
|
87 |
+
fn=generate_image,
|
88 |
+
inputs=[prompt, steps, seed],
|
89 |
+
outputs=output
|
90 |
+
)
|
91 |
+
|
92 |
+
# %% [markdown]
|
93 |
+
# ## 6. Launch App
|
94 |
+
print("Starting interface...")
|
95 |
+
demo.launch(
|
96 |
+
server_name="0.0.0.0",
|
97 |
+
server_port=7860,
|
98 |
+
show_error=True
|
99 |
+
)
|