File size: 9,214 Bytes
80ab65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import json
import math
import random
import warnings
from pathlib import Path

import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.data
import torchvision.transforms as T
import torchvision.transforms.functional as TF
from astropy.io import fits
from astropy.io.fits.verify import VerifyWarning
from einops import rearrange
from torch.utils.data import Dataset
from torchvision.transforms.functional import to_pil_image
from torchvision.utils import make_grid, save_image

warnings.simplefilter('ignore', category=VerifyWarning)
import warnings

import numpy as np
import torch
from astropy.stats import sigma_clip
from astropy.visualization import ZScaleInterval
from torch.utils.data import DataLoader

warnings.simplefilter('ignore', category=VerifyWarning)


CLASSES = ['background', 'spurious', 'compact', 'extended']
COLORS = [[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]]


def get_transforms(img_size):
    return  T.Compose([
                RemoveNaNs(),
                ZScale(),
                SigmaClip(),
                ToTensor(),
                torch.nn.Tanh(),
                MinMaxNormalize(),
                Unsqueeze(),
                T.Resize((img_size, img_size)),
                RepeatChannels((3))
            ])

class RemoveNaNs(object):
    def __init__(self):
        pass

    def __call__(self, img):
        img[np.isnan(img)] = 0
        return img


class ZScale(object):
    def __init__(self, contrast=0.15):
        self.contrast = contrast

    def __call__(self, img):
        interval = ZScaleInterval(contrast=self.contrast)
        min, max = interval.get_limits(img)

        img = (img - min) / (max - min)
        return img


class SigmaClip(object):
    def __init__(self, sigma=3, masked=True):
        self.sigma = sigma
        self.masked = masked

    def __call__(self, img):
        img = sigma_clip(img, sigma=self.sigma, masked=self.masked)
        return img


class MinMaxNormalize(object):
    def __init__(self):
        pass

    def __call__(self, img):
        img = (img - img.min()) / (img.max() - img.min())
        return img


class ToTensor(object):
    def __init__(self):
        pass

    def __call__(self, img):
        return torch.tensor(img, dtype=torch.float32)

class RepeatChannels(object):
    def __init__(self, ch):
        self.ch = ch

    def __call__(self, img):
        return img.repeat(1, self.ch, 1, 1)

class FromNumpy(object):
    def __init__(self):
        pass

    def __call__(self, img):
        return torch.from_numpy(img.astype(np.float32)).type(torch.float32)

class Unsqueeze(object):
    def __init__(self):
        pass

    def __call__(self, img):
        return img.unsqueeze(0)


def mask_to_rgb(mask):
    rgb_mask = torch.zeros_like(mask, device=mask.device).repeat(1, 3, 1, 1)
    for i, c in enumerate(COLORS):
        color_mask = torch.tensor(c, device=mask.device).unsqueeze(
            1).unsqueeze(2) * (mask == i)
        rgb_mask += color_mask
    return rgb_mask

def get_data_loader(dataset, batch_size, split="train"):
    batch_size = batch_size
    workers = min(8, batch_size)
    is_train = split == "train"
    return DataLoader(dataset, shuffle=is_train, batch_size=batch_size,
                      num_workers=workers, persistent_workers=True,
                      drop_last=is_train
                      )

def rgb_to_tensor(mask):
    r,g,b = mask
    r *= 1
    g *= 2
    b *= 3
    mask, _ = torch.max(torch.stack([r,g,b]), dim=0, keepdim=True)
    return mask


def rand_horizontal_flip(img, mask):
    if random.random() < 0.5:
        img = TF.hflip(img)
        mask = TF.hflip(mask)
    return img, mask


class RGDataset(Dataset):
    def __init__(self, data_dir, img_paths, img_size=128):
        super().__init__()
        data_dir = Path(data_dir)
        with open(img_paths) as f:
            self.img_paths = f.read().splitlines()
        self.img_paths = [data_dir / p for p in self.img_paths]

        self.transforms = T.Compose([
            RemoveNaNs(),
            ZScale(),
            SigmaClip(),
            ToTensor(),
            torch.nn.Tanh(),
            MinMaxNormalize(),
            # T.Resize((img_size),
            #          interpolation=T.InterpolationMode.NEAREST),
            Unsqueeze(),
            T.Resize((img_size, img_size)),
            
            RepeatChannels((3))
        ])
        self.img_size = img_size

        self.mask_transforms = T.Compose([
            FromNumpy(),
            Unsqueeze(),
            T.Resize((img_size, img_size),
                     interpolation=T.InterpolationMode.NEAREST),
        ])

    def get_mask(self, img_path, type):
        assert type in ["real", "synthetic"], f"Type {type} not supported"
        if type == "real":
            ann_path = str(img_path).replace(
                'imgs', 'masks').replace('.fits', '.json')
            ann_dir = Path(ann_path).parent
            ann_path = ann_dir / f'mask_{ann_path.split("/")[-1]}'
            with open(ann_path) as j:
                mask_info = json.load(j)

            masks = []

            for obj in mask_info['objs']:
                seg_path = ann_dir / obj['mask']

                mask = fits.getdata(seg_path)

                mask = self.mask_transforms(mask.astype(np.float32))
                masks.append(mask)
            mask, _ = torch.max(torch.stack(masks), dim=0)

        elif type == "synthetic":
            mask_path = str(img_path).replace("gen_fits", "cond_fits")
            mask = fits.getdata(mask_path)
            mask = self.mask_transforms(mask)
            mask = mask.squeeze()
            if mask.shape[0] == 3:
                mask = rgb_to_tensor(mask)
        return mask


    def __len__(self):
        return len(self.img_paths)

    def __getitem__(self, idx):
        image_path = self.img_paths[idx]
        img = fits.getdata(image_path)
        img = self.transforms(img)
        
        if "synthetic" in str(image_path):
            mask = self.get_mask(image_path, type='synthetic')
        else:
            mask = self.get_mask(image_path, type='real')

        # ann_path = str(image_path).replace(
        #     'imgs', 'masks').replace('.fits', '.json')
        # ann_dir = Path(ann_path).parent
        # ann_path = ann_dir / f'mask_{ann_path.split("/")[-1]}'
        # with open(ann_path) as j:
        #     mask_info = json.load(j)


        # masks = []

        # for obj in mask_info['objs']:
        #     seg_path = ann_dir / obj['mask']

        #     mask = fits.getdata(seg_path)

        #     mask = self.mask_transforms(mask.astype(np.float32))
            # masks.append(mask)

        # if 'bkg' in str(image_path):
        #     mask = torch.zeros_like(img)
        #     masks.append(mask)

        # mask, _ = torch.max(torch.stack(masks), dim=0)
        mask = mask.long()
        return img.squeeze(), mask.squeeze()


class SyntheticRGDataset(Dataset):
    def __init__(self, data_dir, img_paths, img_size=128):
        super().__init__()
        data_dir = Path(data_dir)
        with open(img_paths) as f:
            self.img_paths = f.read().splitlines()
        self.img_paths = [data_dir / p for p in self.img_paths]



        self.transforms = T.Compose([
            RemoveNaNs(),
            ZScale(),
            SigmaClip(),
            ToTensor(),
            torch.nn.Tanh(),
            MinMaxNormalize(),
            # T.Resize((img_size),
            #          interpolation=T.InterpolationMode.NEAREST),
            Unsqueeze(),
            T.Resize((img_size, img_size)),
            
            RepeatChannels((3))
        ])
        self.img_size = img_size

        self.mask_transforms = T.Compose([
            FromNumpy(),
            Unsqueeze(),
            T.Resize((img_size, img_size),
                     interpolation=T.InterpolationMode.NEAREST),
        ])

    def __len__(self):
        return len(self.img_paths)

    def __getitem__(self, idx):
        image_path = self.img_paths[idx]
        img = fits.getdata(image_path)
        img = self.transforms(img)
        img = img.squeeze()

        mask_path = str(image_path).replace("gen_fits", "cond_fits")
        mask = fits.getdata(mask_path)
        mask = self.mask_transforms(mask)

        img, mask = rand_horizontal_flip(img, mask)

        mask = mask.squeeze().long()
        return img, mask


if __name__ == '__main__':
    rgtrain = SyntheticRGDataset('data/rg-dataset/data',
                        'data/rg-dataset/val_w_bg.txt')
    batch = next(iter(rgtrain))
    image, mask, masked_image = batch
    to_pil_image(image).save('image.png')
    rgb_mask = mask_to_rgb(mask)[0]
    to_pil_image(rgb_mask).save('mask.png')
    to_pil_image(masked_image[0]).save('masked.png')

    bs = 256

    loader = torch.utils.data.DataLoader(
        rgtrain, batch_size=bs, shuffle=False, num_workers=16)
    for i, batch in enumerate(loader):
        image, mask, masked_image = batch
        rgb_mask = mask_to_rgb(mask)
        nrow = int(math.sqrt(bs))
        # nrow = bs // 2
        grid = make_grid(rgb_mask, nrow=nrow, padding=0)
        save_image(grid, f'mask_{nrow}x{nrow}.png')
        break