import gradio as gr import os from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load your model and tokenizer model_name = "rshaikh22/coachcarellm" # Replace with your actual model repo tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Move model to appropriate device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def respond(message, history): input_text = message inputs = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors="pt").to(device) outputs = model.generate(inputs, max_length=1000, pad_token_id=tokenizer.eos_token_id) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()