rshaikh22 commited on
Commit
92db903
·
verified ·
1 Parent(s): bf6fe57

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -44
app.py CHANGED
@@ -1,48 +1,24 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
@@ -59,6 +35,5 @@ demo = gr.ChatInterface(
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ import os
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
+ import torch
5
+
6
+ # Load your model and tokenizer
7
+ model_name = "rshaikh22/coachcarellm" # Replace with your actual model repo
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+ model = AutoModelForCausalLM.from_pretrained(model_name)
10
+
11
+ # Move model to appropriate device
12
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
+ model.to(device)
14
+
15
+ def respond(message, history):
16
+ input_text = message
17
+ inputs = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors="pt").to(device)
18
+ outputs = model.generate(inputs, max_length=1000, pad_token_id=tokenizer.eos_token_id)
19
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
20
+ return response
21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  demo = gr.ChatInterface(
23
  respond,
24
  additional_inputs=[
 
35
  ],
36
  )
37
 
 
38
  if __name__ == "__main__":
39
  demo.launch()