import gradio as gr
import spaces
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
from sentence_transformers.quantization import quantize_embeddings
import pymssql
import os
import pandas as pd
from openai import OpenAI
from pydantic import BaseModel, Field
import json
from sentence_transformers import CrossEncoder
from torch import nn
import time
SqlServer = os.environ['SQL_SERVER']
SqlDatabase = os.environ['SQL_DB']
SqlUser = os.environ['SQL_USER']
SqlPass = os.environ['SQL_PASS']
OpenaiApiKey = os.environ.get("OPENAI_API_KEY")
OpenaiBaseUrl = os.environ.get("OPENAI_BASE_URL","https://generativelanguage.googleapis.com/v1beta/openai")
def sql(query,db=SqlDatabase, login_timeout = 120,onConnectionError = None):
start_time = time.time()
while True:
try:
cnxn = pymssql.connect(SqlServer,SqlUser,SqlPass,db, login_timeout = 5)
break;
except Exception as e:
if onConnectionError:
onConnectionError(e)
if time.time() - start_time > login_timeout:
raise TimeoutError("SQL Connection Timeout");
time.sleep(1) # Espera 1 segundo antes de tentar novamente
cursor = cnxn.cursor()
cursor.execute(query)
columns = [column[0] for column in cursor.description]
results = [dict(zip(columns, row)) for row in cursor.fetchall()]
return results;
@spaces.GPU
def embed(text):
query_embedding = Embedder.encode(text)
return query_embedding.tolist();
@spaces.GPU
def rerank(query,documents, **kwargs):
return Reranker.rank(query, documents, **kwargs)
ClientOpenai = OpenAI(
api_key=OpenaiApiKey
,base_url=OpenaiBaseUrl
)
def llm(messages, ResponseFormat = None, **kwargs):
fn = ClientOpenai.chat.completions.create
if ResponseFormat:
fn = ClientOpenai.beta.chat.completions.parse
params = {
'model':"gemini-2.0-flash"
,'n':1
,'messages':messages
,'response_format':ResponseFormat
}
params.update(kwargs);
response = fn(**params)
if params.get('stream'):
return response
return response.choices[0];
def ai(system,user, schema, **kwargs):
msg = [
{'role':"system",'content':system}
,{'role':"user",'content':user}
]
return llm(msg, schema, **kwargs);
def search(text, top = 10, onConnectionError = None):
EnglishText = text
embeddings = embed(text);
query = f"""
declare @search vector(1024) = '{embeddings}'
select top {top}
*
from (
select
RelPath
,Similaridade = 1-CosDistance
,ScriptContent = ChunkContent
,ContentLength = LEN(ChunkContent)
,CosDistance
from
(
select
*
,CosDistance = vector_distance('cosine',embeddings,@search)
from
Scripts
) C
) v
order by
CosDistance
"""
queryResults = sql(query, onConnectionError = onConnectionError);
return queryResults
print("Loading embedding model");
Embedder = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
print("Loading reranker");
Reranker = CrossEncoder("mixedbread-ai/mxbai-rerank-large-v1", activation_fn=nn.Sigmoid())
class rfTranslatedText(BaseModel):
text: str = Field(description='Translated text')
lang: str = Field(description='source language')
class rfGenericText(BaseModel):
text: str = Field(description='The text result')
def ChatFunc(message, history, LangMode, ChooseLang):
# Determinar se o user quer fazer uma nova pesquisa!
IsNewSearch = True;
messages = []
CurrentTable = None;
def ChatBotOutput():
return [messages,CurrentTable]
class BotMessage():
def __init__(self, *args, **kwargs):
self.Message = gr.ChatMessage(*args, **kwargs)
self.LastContent = None
messages.append(self.Message);
def __call__(self, content, noNewLine = False):
if not content:
return;
self.Message.content += content;
self.LastContent = None;
if not noNewLine:
self.Message.content += "\n";
return ChatBotOutput();
def update(self,content):
if not self.LastContent:
self.LastContent = self.Message.content
self.Message.content = self.LastContent +" "+content+"\n";
return ChatBotOutput();
def done(self):
self.Message.metadata['status'] = "done";
return ChatBotOutput();
def Reply(msg):
m = BotMessage(msg);
return ChatBotOutput();
m = BotMessage("",metadata={"title":"Searching scripts...","status":"pending"});
def OnConnError(err):
print("Sql connection error:", err)
try:
# Responder algo sobre o historico!
if IsNewSearch:
yield m("Enhancing the prompt...")
LLMResult = ai("""
Translate the user's message to English.
The message is a question related to a SQL Server T-SQL script that the user is searching for.
You must do following actions:
- Identify the language of user text, using BCP 47 code (example: pt-BR, en-US, ja-JP, etc.)
- Generate translated user text to english
Return both source language and translated text.
""",message, rfTranslatedText)
Question = LLMResult.message.parsed.text;
if LangMode == "auto":
SourceLang = LLMResult.message.parsed.lang;
else:
SourceLang = ChooseLang
yield m(f"Lang:{SourceLang}({LangMode}), English Prompt: {Question}")
yield m("searching...")
try:
FoundScripts = search(Question, onConnectionError = OnConnError)
except Exception as e:
print('Search Error:')
print(e)
yield m("Houve alguma falha ao fazer a pesquisa. Tente novamente. Se persistir, veja orientações na aba Help!")
return;
yield m("Doing rerank");
doclist = [doc['ScriptContent'] for doc in FoundScripts]
# Faz o reranker!
for score in rerank(Question, doclist):
i = score['corpus_id'];
FoundScripts[i]['rank'] = str(score['score'])
RankedScripts = sorted(FoundScripts, key=lambda item: float(item['rank']), reverse=True)
ScriptTable = []
for script in RankedScripts:
link = "https://github.com/rrg92/sqlserver-lib/tree/main/" + script['RelPath']
script['link'] = link;
ScriptTable.append({
'Link': f'{script["RelPath"]}'
,'Length': script['ContentLength']
,'Cosine Similarity': script['Similaridade']
,'Rank': script['rank']
})
CurrentTable = pd.DataFrame(ScriptTable)
yield m("Found scripts, check Rank tab for details!")
WaitMessage = ai(f"""
You will analyze some T-SQL scripts in order to check which is best for the user.
You found scripts, presented them to the user, and now will do some work that takes time.
Generate a message to tell the user to wait while you work, in the same language as the user.
You will receive the question the user sent that triggered this process.
Use the user’s original question to customize the message.
Answer in lang: {SourceLang}
""",message,rfGenericText).message.parsed.text
yield Reply(WaitMessage);
yield m(f"Analyzing scripts...")
ResultJson = json.dumps(RankedScripts);
SystemPrompt = f"""
You are an assistant that helps users find the best T-SQL scripts for their specific needs.
These scripts were created by Rodrigo Ribeiro Gomes and are publicly available for users to query and use.
The user will provide a short description of what they are looking for, and your task is to present the most relevant scripts.
To assist you, here is a JSON object with the top matches based on the current user query:
{ResultJson}
---
This JSON contains all the scripts that matched the user's input.
Analyze each script's name and content, and create a ranked summary of the best recommendations according to the user's need.
Only use the information available in the provided JSON. Do not reference or mention anything outside of this list.
You can include parts of the scripts in your answer to illustrate or give usage examples based on the user's request.
Re-rank the results if necessary, presenting them from the most to the least relevant.
You may filter out scripts that appear unrelated to the user query.
---
### Output Rules
- Review each script and evaluate how well it matches the user’s request.
- Summarize each script, ordering from the most relevant to the least relevant.
- Write personalized and informative review text for each recommendation.
- If applicable, explain how the user should run the script, including parameters or sections (like `WHERE` clauses) they might need to customize.
- When referencing a script, include the link provided in the JSON — all scripts are hosted on GitHub
- YOU MUST ANSWER THAT LANGUAGE: {SourceLang}
"""
ScriptPrompt = [
{ 'role':'system', 'content':SystemPrompt }
,{ 'role':'user', 'content':message }
]
llmanswer = llm(ScriptPrompt, stream = True)
yield m.done()
answer = BotMessage("");
for chunk in llmanswer:
content = chunk.choices[0].delta.content
yield answer(content, noNewLine = True)
finally:
yield m.done()
def SearchFiles(message):
Question = message;
try:
FoundScripts = search(Question)
except:
return m("Houve alguma falha ao executar a consulta no banco. Tente novamente. Se persistir, veja orientações na aba Help!")
return;
doclist = [doc['ScriptContent'] for doc in FoundScripts]
# Faz o reranker!
ScriptTable = [];
for score in rerank(Question, doclist):
i = score['corpus_id'];
script = FoundScripts[i];
script['rank'] = str(score['score'])
link = "https://github.com/rrg92/sqlserver-lib/tree/main/" + script['RelPath']
script['link'] = link;
if not AsJson:
ScriptTable.append({
'Link': f'{script["RelPath"]}'
,'Length': script['ContentLength']
,'Cosine Similarity': script['Similaridade']
,'Rank': script['rank']
})
RankedScripts = sorted(FoundScripts, key=lambda item: float(item['rank']), reverse=True)
#result = pd.DataFrame(ScriptTable)
jsonresult = json.dumps(RankedScripts)
return jsonresult;
resultTable = gr.Dataframe(datatype = ['html','number','number'], interactive = False, show_search = "search");
TextResults = gr.Textbox()
with gr.Blocks(fill_height=True) as demo:
with gr.Column():
tabSettings = gr.Tab("Settings", render = False)
with tabSettings:
LangOpts = gr.Radio([("Auto Detect from text","auto"), ("Use browser language","browser")], value="auto", label="Language", info="Choose lang used by AI to answer you!")
LangChoose = gr.Textbox(info = "This will be filled with detect browser language, but you can change")
LangOpts.change(None, [LangOpts],[LangChoose], js = """
function(opt){
if(opt == "browser"){
return navigator ? navigator.language : "en-US";
}
}
""")
with gr.Tab("Chat", scale = 1):
ChatTextBox = gr.Textbox(max_length = 500, info = "Which script are you looking for?", submit_btn = True);
gr.ChatInterface(
ChatFunc
,additional_outputs=[resultTable]
,additional_inputs=[LangOpts,LangChoose]
,type="messages"
,textbox = ChatTextBox
)
tabSettings.render()
with gr.Tab("Rank"):
txtSearchTable = gr.Textbox(label="Search script files",info="Description of what you want", visible = False)
AsJson = gr.Checkbox(visible = False)
resultTable.render();
txtSearchTable.submit(SearchFiles, [txtSearchTable],[TextResults])
with gr.Tab("Help"):
gr.Markdown("""
Bem-vindo ao Space SQL Server Lib
Este space permite que você encontre scripts SQL do https://github.com/rrg92/sqlserver-lib com base nas suas necessidades
## Instruções de Uso
Apenas descreva o que você precisa no campo de chat e aguarde a IA analisar os melhores scripts do repositório para você.
Além de uma explicação feita pela IA, a aba "Rank", contém uma tabela com os scripts encontrados e seus respectictos rank.
A coluna Cosine Similarity é o nível de similaridades da sua pergunta com o script (calculado baseado nos embeddings do seu texto e do script).
A coluna Rank é um score onde quanto maior o valor mais relacionado ao seu texto o script é (calculado usando rerank/cross encoders). A tabela vem ordenada por essa coluna.
## Fluxo básico
- Quando você digita o texto, iremos fazer uma busca usando embeddings em um banco Azure SQL Database
- Os embeddings são calculados usando um modelo carregado no proprio script, via ZeroGPU.
- Os top 20 resultados mais similares são retornados e então um rerank é feito
- O rerank também é feito por um modelo que roda no próprio script, em ZeroGPU
- Estes resultados ordenados por reran, são então enviados ao LLM para que analise e monte uma resposta para você.
## Sobre o uso e eventuais erros
Eu tento usar o máximo de recursos FREE e open possíveis, e portanto, eventualmente, o Space pode falhar por alguma limitação.
Alguns possíveis pontos de falha:
- Créditos free do google ou rate limit
- Azure SQL database offline devido a crédito ou ao auto-pause (devido ao free tier)
- Limites de uso do ZeroGPU do Hugging Face.
Você pode me procurar no [linkedin](https://www.linkedin.com/in/rodrigoribeirogomes/), caso receba erroslimit
""")
with gr.Tab("Other", visible = False):
txtEmbed = gr.Text(label="Text to embed", visible=False)
btnEmbed = gr.Button("embed");
btnEmbed.click(embed, [txtEmbed], [txtEmbed])
TextResults.render();
if __name__ == "__main__":
demo.launch(
share=False,
debug=False,
server_port=7860,
server_name="0.0.0.0",
allowed_paths=[]
)