Spaces:
Sleeping
Sleeping
Lot of enhacements
Browse files- Dockerfile +7 -3
- app.py +368 -10
- docker-compose.yml +13 -0
- requirements.txt +5 -1
Dockerfile
CHANGED
@@ -5,17 +5,21 @@ ARG DEBIAN_FRONTEND=noninteractive
|
|
5 |
# apt-get install --no-install-recommends -y sox libsox-fmt-all curl wget gcc git git-lfs build-essential libaio-dev libsndfile1 ssh ffmpeg && \
|
6 |
# apt-get clean && apt-get -y autoremove
|
7 |
|
|
|
|
|
|
|
|
|
8 |
WORKDIR /app
|
9 |
COPY requirements.txt .
|
10 |
RUN python -m pip install --verbose -r requirements.txt
|
11 |
RUN python -m pip cache purge
|
12 |
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
COPY . .
|
17 |
RUN chmod +x InstallFromReadme.sh
|
18 |
RUN ./InstallFromReadme.sh
|
19 |
|
|
|
20 |
|
21 |
CMD ["python","app.py"]
|
|
|
5 |
# apt-get install --no-install-recommends -y sox libsox-fmt-all curl wget gcc git git-lfs build-essential libaio-dev libsndfile1 ssh ffmpeg && \
|
6 |
# apt-get clean && apt-get -y autoremove
|
7 |
|
8 |
+
RUN apt-get update
|
9 |
+
|
10 |
+
RUN python -m pip install spaces
|
11 |
+
|
12 |
WORKDIR /app
|
13 |
COPY requirements.txt .
|
14 |
RUN python -m pip install --verbose -r requirements.txt
|
15 |
RUN python -m pip cache purge
|
16 |
|
17 |
|
18 |
+
COPY InstallFromReadme.sh .
|
19 |
+
COPY README.md .
|
|
|
20 |
RUN chmod +x InstallFromReadme.sh
|
21 |
RUN ./InstallFromReadme.sh
|
22 |
|
23 |
+
COPY . .
|
24 |
|
25 |
CMD ["python","app.py"]
|
app.py
CHANGED
@@ -3,28 +3,386 @@ import spaces
|
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
from sentence_transformers.util import cos_sim
|
5 |
from sentence_transformers.quantization import quantize_embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
print("Loading embedding model");
|
8 |
-
dimensions = 768
|
9 |
-
model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1", truncate_dim=dimensions)
|
10 |
|
11 |
@spaces.GPU
|
12 |
def embed(text):
|
13 |
|
14 |
-
query_embedding =
|
15 |
return query_embedding.tolist();
|
16 |
|
|
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
search = gr.Text(label="Script to search")
|
24 |
|
25 |
-
results = gr.Text(label="results");
|
26 |
|
27 |
-
btnEmbed.click(embed, [txtEmbed], [results])
|
28 |
|
29 |
|
30 |
|
|
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
from sentence_transformers.util import cos_sim
|
5 |
from sentence_transformers.quantization import quantize_embeddings
|
6 |
+
import pymssql
|
7 |
+
import os
|
8 |
+
import pandas as pd
|
9 |
+
from openai import OpenAI
|
10 |
+
from pydantic import BaseModel, Field
|
11 |
+
import json
|
12 |
+
from sentence_transformers import CrossEncoder
|
13 |
+
from torch import nn
|
14 |
+
import time
|
15 |
+
|
16 |
+
|
17 |
+
SqlServer = os.environ['SQL_SERVER']
|
18 |
+
SqlDatabase = os.environ['SQL_DB']
|
19 |
+
SqlUser = os.environ['SQL_USER']
|
20 |
+
SqlPass = os.environ['SQL_PASS']
|
21 |
+
|
22 |
+
|
23 |
+
OpenaiApiKey = os.environ.get("OPENAI_API_KEY")
|
24 |
+
OpenaiBaseUrl = os.environ.get("OPENAI_BASE_URL","https://generativelanguage.googleapis.com/v1beta/openai")
|
25 |
+
|
26 |
+
|
27 |
+
def sql(query,db=SqlDatabase, login_timeout = 120,onConnectionError = None):
|
28 |
+
|
29 |
+
start_time = time.time()
|
30 |
+
|
31 |
+
while True:
|
32 |
+
try:
|
33 |
+
cnxn = pymssql.connect(SqlServer,SqlUser,SqlPass,db, login_timeout = 5)
|
34 |
+
break;
|
35 |
+
except Exception as e:
|
36 |
+
if onConnectionError:
|
37 |
+
onConnectionError(e)
|
38 |
+
|
39 |
+
if time.time() - start_time > login_timeout:
|
40 |
+
raise TimeoutError("SQL Connection Timeout");
|
41 |
+
|
42 |
+
time.sleep(1) # Espera 1 segundo antes de tentar novamente
|
43 |
+
|
44 |
+
|
45 |
+
cursor = cnxn.cursor()
|
46 |
+
cursor.execute(query)
|
47 |
+
|
48 |
+
columns = [column[0] for column in cursor.description]
|
49 |
+
results = [dict(zip(columns, row)) for row in cursor.fetchall()]
|
50 |
+
|
51 |
+
return results;
|
52 |
+
|
53 |
|
|
|
|
|
|
|
54 |
|
55 |
@spaces.GPU
|
56 |
def embed(text):
|
57 |
|
58 |
+
query_embedding = Embedder.encode(text)
|
59 |
return query_embedding.tolist();
|
60 |
|
61 |
+
|
62 |
+
@spaces.GPU
|
63 |
+
def rerank(query,documents, **kwargs):
|
64 |
+
return Reranker.rank(query, documents, **kwargs)
|
65 |
|
66 |
+
ClientOpenai = OpenAI(
|
67 |
+
api_key=OpenaiApiKey
|
68 |
+
,base_url=OpenaiBaseUrl
|
69 |
+
)
|
70 |
|
71 |
+
def llm(messages, ResponseFormat = None, **kwargs):
|
72 |
+
|
73 |
+
fn = ClientOpenai.chat.completions.create
|
74 |
+
|
75 |
+
if ResponseFormat:
|
76 |
+
fn = ClientOpenai.beta.chat.completions.parse
|
77 |
+
|
78 |
+
params = {
|
79 |
+
'model':"gemini-2.0-flash"
|
80 |
+
,'n':1
|
81 |
+
,'messages':messages
|
82 |
+
,'response_format':ResponseFormat
|
83 |
+
}
|
84 |
+
|
85 |
+
params.update(kwargs);
|
86 |
+
|
87 |
+
response = fn(**params)
|
88 |
+
|
89 |
+
if params.get('stream'):
|
90 |
+
return response
|
91 |
+
|
92 |
+
return response.choices[0];
|
93 |
+
|
94 |
+
def ai(system,user, schema, **kwargs):
|
95 |
+
msg = [
|
96 |
+
{'role':"system",'content':system}
|
97 |
+
,{'role':"user",'content':user}
|
98 |
+
]
|
99 |
+
|
100 |
+
return llm(msg, schema, **kwargs);
|
101 |
+
|
102 |
+
|
103 |
+
def search(text, top = 10, onConnectionError = None):
|
104 |
+
|
105 |
+
EnglishText = text
|
106 |
+
|
107 |
+
embeddings = embed(text);
|
108 |
+
|
109 |
+
query = f"""
|
110 |
+
declare @search vector(1024) = '{embeddings}'
|
111 |
+
|
112 |
+
select top {top}
|
113 |
+
*
|
114 |
+
from (
|
115 |
+
select
|
116 |
+
RelPath
|
117 |
+
,Similaridade = 1-CosDistance
|
118 |
+
,ScriptContent = ChunkContent
|
119 |
+
,ContentLength = LEN(ChunkContent)
|
120 |
+
,CosDistance
|
121 |
+
from
|
122 |
+
(
|
123 |
+
select
|
124 |
+
*
|
125 |
+
,CosDistance = vector_distance('cosine',embeddings,@search)
|
126 |
+
from
|
127 |
+
Scripts
|
128 |
+
) C
|
129 |
+
) v
|
130 |
+
order by
|
131 |
+
CosDistance
|
132 |
+
"""
|
133 |
+
|
134 |
+
queryResults = sql(query, onConnectionError = onConnectionError);
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
return queryResults
|
139 |
+
|
140 |
+
|
141 |
+
print("Loading embedding model");
|
142 |
+
Embedder = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
143 |
+
|
144 |
+
print("Loading reranker");
|
145 |
+
Reranker = CrossEncoder("mixedbread-ai/mxbai-rerank-large-v1", activation_fn=nn.Sigmoid())
|
146 |
+
|
147 |
+
class rfTranslatedText(BaseModel):
|
148 |
+
text: str = Field(description='Translated text')
|
149 |
+
|
150 |
+
class rfGenericText(BaseModel):
|
151 |
+
text: str = Field(description='The text result')
|
152 |
+
|
153 |
+
def ChatFunc(message, history):
|
154 |
+
|
155 |
+
|
156 |
+
# Determinar se o user quer fazer uma nova pesquisa!
|
157 |
+
IsNewSearch = True;
|
158 |
+
|
159 |
+
messages = []
|
160 |
+
CurrentTable = None;
|
161 |
+
|
162 |
+
def ChatBotOutput():
|
163 |
+
return [messages,CurrentTable]
|
164 |
+
|
165 |
+
class BotMessage():
|
166 |
+
def __init__(self, *args, **kwargs):
|
167 |
+
self.Message = gr.ChatMessage(*args, **kwargs)
|
168 |
+
self.LastContent = None
|
169 |
+
messages.append(self.Message);
|
170 |
+
|
171 |
+
def __call__(self, content, noNewLine = False):
|
172 |
+
if not content:
|
173 |
+
return;
|
174 |
+
|
175 |
+
self.Message.content += content;
|
176 |
+
self.LastContent = None;
|
177 |
+
|
178 |
+
if not noNewLine:
|
179 |
+
self.Message.content += "\n";
|
180 |
+
|
181 |
+
return ChatBotOutput();
|
182 |
+
|
183 |
+
def update(self,content):
|
184 |
+
|
185 |
+
if not self.LastContent:
|
186 |
+
self.LastContent = self.Message.content
|
187 |
+
|
188 |
+
self.Message.content = self.LastContent +" "+content+"\n";
|
189 |
+
|
190 |
+
return ChatBotOutput();
|
191 |
+
|
192 |
+
def done(self):
|
193 |
+
self.Message.metadata['status'] = "done";
|
194 |
+
return ChatBotOutput();
|
195 |
+
|
196 |
+
def Reply(msg):
|
197 |
+
m = BotMessage(msg);
|
198 |
+
return ChatBotOutput();
|
199 |
+
|
200 |
+
m = BotMessage("",metadata={"title":"Procurando scripts...","status":"pending"});
|
201 |
+
|
202 |
+
|
203 |
+
def OnConnError(err):
|
204 |
+
print("Sql connection error:", err)
|
205 |
+
|
206 |
+
|
207 |
+
try:
|
208 |
+
# Responder algo sobre o historico!
|
209 |
+
if IsNewSearch:
|
210 |
+
|
211 |
+
yield m("Melhorando o prompt")
|
212 |
+
|
213 |
+
|
214 |
+
LLMResult = ai("""
|
215 |
+
Translate the user's message to English.
|
216 |
+
The message is a question related to a SQL Server T-SQL script that the user is searching for.
|
217 |
+
You only need to translate the message to English.
|
218 |
+
""",message, rfTranslatedText)
|
219 |
+
Question = LLMResult.message.parsed.text;
|
220 |
+
|
221 |
+
yield m(f"Melhorado: {Question}")
|
222 |
+
|
223 |
+
yield m("Procurando scripts...")
|
224 |
+
try:
|
225 |
+
FoundScripts = search(message, onConnectionError = OnConnError)
|
226 |
+
except:
|
227 |
+
yield m("Houve alguma falha ao executar a consulta no banco. Tente novamente. Se persistir, veja orientações na aba Help!")
|
228 |
+
return;
|
229 |
+
|
230 |
+
yield m("Fazendo o rerank");
|
231 |
+
doclist = [doc['ScriptContent'] for doc in FoundScripts]
|
232 |
+
|
233 |
+
# Faz o reranker!
|
234 |
+
for score in rerank(Question, doclist):
|
235 |
+
i = score['corpus_id'];
|
236 |
+
FoundScripts[i]['rank'] = str(score['score'])
|
237 |
+
|
238 |
+
RankedScripts = sorted(FoundScripts, key=lambda item: float(item['rank']), reverse=True)
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
ScriptTable = []
|
243 |
+
for script in RankedScripts:
|
244 |
+
link = "https://github.com/rrg92/sqlserver-lib/tree/main/" + script['RelPath']
|
245 |
+
script['link'] = link;
|
246 |
+
|
247 |
+
ScriptTable.append({
|
248 |
+
'Link': f'<a title="{link}" href="{link}" target="_blank">{script["RelPath"]}</a>'
|
249 |
+
,'Length': script['ContentLength']
|
250 |
+
,'Cosine Similarity': script['Similaridade']
|
251 |
+
,'Rank': script['rank']
|
252 |
+
})
|
253 |
+
|
254 |
+
|
255 |
+
CurrentTable = pd.DataFrame(ScriptTable)
|
256 |
+
yield m("Script encontrados, a aba Rank atualizada!")
|
257 |
+
|
258 |
+
|
259 |
+
WaitMessage = ai("""
|
260 |
+
You will analyze some T-SQL scripts in order to check which is best for the user.
|
261 |
+
You found scripts, presented them to the user, and now will do some work that takes time.
|
262 |
+
Generate a message to tell the user to wait while you work, in the same language as the user.
|
263 |
+
You will receive the question the user sent that triggered this process.
|
264 |
+
Use the user’s original question to customize the message.
|
265 |
+
""",message,rfGenericText).message.parsed.text
|
266 |
+
|
267 |
+
yield Reply(WaitMessage);
|
268 |
+
|
269 |
+
yield m(f"Analisando scripts...")
|
270 |
+
|
271 |
+
|
272 |
+
ResultJson = json.dumps(RankedScripts);
|
273 |
+
|
274 |
+
SystemPrompt = f"""
|
275 |
+
You are an assistant that helps users find the best T-SQL scripts for their specific needs.
|
276 |
+
These scripts were created by Rodrigo Ribeiro Gomes and are publicly available for users to query and use.
|
277 |
+
|
278 |
+
The user will provide a short description of what they are looking for, and your task is to present the most relevant scripts.
|
279 |
+
|
280 |
+
To assist you, here is a JSON object with the top matches based on the current user query:
|
281 |
+
{ResultJson}
|
282 |
+
|
283 |
+
---
|
284 |
+
This JSON contains all the scripts that matched the user's input.
|
285 |
+
Analyze each script's name and content, and create a ranked summary of the best recommendations according to the user's need.
|
286 |
+
|
287 |
+
Only use the information available in the provided JSON. Do not reference or mention anything outside of this list.
|
288 |
+
You can include parts of the scripts in your answer to illustrate or give usage examples based on the user's request.
|
289 |
+
|
290 |
+
Re-rank the results if necessary, presenting them from the most to the least relevant.
|
291 |
+
You may filter out scripts that appear unrelated to the user query.
|
292 |
+
|
293 |
+
Respond in the user's original language.
|
294 |
+
---
|
295 |
+
### Output Rules
|
296 |
+
|
297 |
+
- Review each script and evaluate how well it matches the user’s request.
|
298 |
+
- Summarize each script, ordering from the most relevant to the least relevant.
|
299 |
+
- Write personalized and informative review text for each recommendation.
|
300 |
+
- If applicable, explain how the user should run the script, including parameters or sections (like `WHERE` clauses) they might need to customize.
|
301 |
+
- When referencing a script, include the link provided in the JSON — all scripts are hosted on GitHub.
|
302 |
+
"""
|
303 |
+
|
304 |
+
ScriptPrompt = [
|
305 |
+
{ 'role':'system', 'content':SystemPrompt }
|
306 |
+
,{ 'role':'user', 'content':message }
|
307 |
+
]
|
308 |
+
|
309 |
+
|
310 |
+
|
311 |
+
|
312 |
+
llmanswer = llm(ScriptPrompt, stream = True)
|
313 |
+
yield m.done()
|
314 |
+
|
315 |
+
answer = BotMessage("");
|
316 |
+
|
317 |
+
for chunk in llmanswer:
|
318 |
+
content = chunk.choices[0].delta.content
|
319 |
+
yield answer(content, noNewLine = True)
|
320 |
+
finally:
|
321 |
+
yield m.done()
|
322 |
+
|
323 |
+
|
324 |
+
resultTable = gr.Dataframe(datatype = ['html','number','number'], interactive = False, show_search = "search");
|
325 |
+
|
326 |
+
with gr.Blocks(fill_height=True) as demo:
|
327 |
+
|
328 |
+
with gr.Column():
|
329 |
+
|
330 |
+
with gr.Tab("Chat", scale = 1):
|
331 |
+
ChatTextBox = gr.Textbox(max_length = 100, info = "Que script precisa?", submit_btn = True);
|
332 |
+
|
333 |
+
gr.ChatInterface(
|
334 |
+
ChatFunc
|
335 |
+
,additional_outputs=[resultTable]
|
336 |
+
,type="messages"
|
337 |
+
,textbox = ChatTextBox
|
338 |
+
)
|
339 |
+
|
340 |
+
with gr.Tab("Rank"):
|
341 |
+
resultTable.render();
|
342 |
+
|
343 |
+
with gr.Tab("Help"):
|
344 |
+
gr.Markdown("""
|
345 |
+
Bem-vindo ao Space SQL Server Lib
|
346 |
+
Este space permite que você encontre scripts SQL do https://github.com/rrg92/sqlserver-lib com base nas suas necessidades
|
347 |
+
|
348 |
+
|
349 |
+
## Instruções de Uso
|
350 |
+
Apenas descreva o que você precisa no campo de chat e aguarde a IA analisar os melhores scripts do repositório para você.
|
351 |
+
Além de uma explicação feita pela IA, a aba "Rank", contém uma tabela com os scripts encontrados e seus respectictos rank.
|
352 |
+
A coluna Cosine Similarity é o nível de similaridades da sua pergunta com o script (calculado baseado nos embeddings do seu texto e do script).
|
353 |
+
A coluna Rank é um score onde quanto maior o valor mais relacionado ao seu texto o script é (calculado usando rerank/cross encoders). A tabela vem ordenada por essa coluna.
|
354 |
+
|
355 |
+
|
356 |
+
## Fluxo básico
|
357 |
+
- Quando você digita o texto, iremos fazer uma busca usando embeddings em um banco Azure SQL Database
|
358 |
+
- Os embeddings são calculados usando um modelo carregado no proprio script, via ZeroGPU.
|
359 |
+
- Os top 20 resultados mais similares são retornados e então um rerank é feito
|
360 |
+
- O rerank também é feito por um modelo que roda no próprio script, em ZeroGPU
|
361 |
+
- Estes resultados ordenados por reran, são então enviados ao LLM para que analise e monte uma resposta para você.
|
362 |
+
|
363 |
+
|
364 |
+
## Sobre o uso e eventuais erros
|
365 |
+
Eu tento usar o máximo de recursos FREE e open possíveis, e portanto, eventualmente, o Space pode falhar por alguma limitação.
|
366 |
+
Alguns possíveis pontos de falha:
|
367 |
+
- Créditos free do google ou rate limit
|
368 |
+
- Azure SQL database offline devido a crédito ou ao auto-pause (devido ao free tier)
|
369 |
+
- Limites de uso do ZeroGPU do Hugging Face.
|
370 |
+
|
371 |
+
Você pode me procurar no [linkedin](https://www.linkedin.com/in/rodrigoribeirogomes/), caso receba erroslimit
|
372 |
+
|
373 |
+
""")
|
374 |
+
|
375 |
+
with gr.Tab("Other", visible = False):
|
376 |
+
txtEmbed = gr.Text(label="Text to embed", visible=False)
|
377 |
+
btnEmbed = gr.Button("embed");
|
378 |
+
btnEmbed.click(embed, [txtEmbed], [txtEmbed])
|
379 |
+
|
380 |
+
|
381 |
+
|
382 |
+
|
383 |
|
|
|
384 |
|
|
|
385 |
|
|
|
386 |
|
387 |
|
388 |
|
docker-compose.yml
CHANGED
@@ -1,5 +1,18 @@
|
|
|
|
|
|
|
|
1 |
services:
|
2 |
app:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
build:
|
4 |
context: .
|
5 |
dockerfile: Dockerfile
|
|
|
1 |
+
volumes:
|
2 |
+
hfdata:
|
3 |
+
|
4 |
services:
|
5 |
app:
|
6 |
+
environment:
|
7 |
+
SQL_SERVER: $SQL_SERVER
|
8 |
+
SQL_DB: $SQL_DB
|
9 |
+
SQL_USER: $SQL_USER
|
10 |
+
SQL_PASS: $SQL_PASS
|
11 |
+
HF_HOME: /hfdata
|
12 |
+
HF_TOKEN: $HF_TOKEN
|
13 |
+
OPENAI_API_KEY: $OPENAI_API_KEY
|
14 |
+
volumes:
|
15 |
+
- hfdata:/hfdata
|
16 |
build:
|
17 |
context: .
|
18 |
dockerfile: Dockerfile
|
requirements.txt
CHANGED
@@ -1 +1,5 @@
|
|
1 |
-
sentence-transformers
|
|
|
|
|
|
|
|
|
|
1 |
+
sentence-transformers
|
2 |
+
pymssql
|
3 |
+
pandas
|
4 |
+
openai
|
5 |
+
pydantic
|