# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= from __future__ import annotations import os from typing import Any from openai import OpenAI from camel.embeddings.base import BaseEmbedding from camel.types import NOT_GIVEN, EmbeddingModelType, NotGiven from camel.utils import api_keys_required class OpenAIEmbedding(BaseEmbedding[str]): r"""Provides text embedding functionalities using OpenAI's models. Args: model_type (EmbeddingModelType, optional): The model type to be used for text embeddings. (default: :obj:`TEXT_EMBEDDING_3_SMALL`) api_key (str, optional): The API key for authenticating with the OpenAI service. (default: :obj:`None`) dimensions (int, optional): The text embedding output dimensions. (default: :obj:`NOT_GIVEN`) Raises: RuntimeError: If an unsupported model type is specified. """ def __init__( self, model_type: EmbeddingModelType = ( EmbeddingModelType.TEXT_EMBEDDING_3_SMALL ), api_key: str | None = None, dimensions: int | NotGiven = NOT_GIVEN, ) -> None: if not model_type.is_openai: raise ValueError("Invalid OpenAI embedding model type.") self.model_type = model_type if dimensions == NOT_GIVEN: self.output_dim = model_type.output_dim else: assert isinstance(dimensions, int) self.output_dim = dimensions self._api_key = api_key or os.environ.get("OPENAI_API_KEY") self.client = OpenAI(timeout=60, max_retries=3, api_key=self._api_key) @api_keys_required("OPENAI_API_KEY") def embed_list( self, objs: list[str], **kwargs: Any, ) -> list[list[float]]: r"""Generates embeddings for the given texts. Args: objs (list[str]): The texts for which to generate the embeddings. **kwargs (Any): Extra kwargs passed to the embedding API. Returns: list[list[float]]: A list that represents the generated embedding as a list of floating-point numbers. """ # TODO: count tokens if self.model_type == EmbeddingModelType.TEXT_EMBEDDING_ADA_2: response = self.client.embeddings.create( input=objs, model=self.model_type.value, **kwargs, ) else: response = self.client.embeddings.create( input=objs, model=self.model_type.value, dimensions=self.output_dim, **kwargs, ) return [data.embedding for data in response.data] def get_output_dim(self) -> int: r"""Returns the output dimension of the embeddings. Returns: int: The dimensionality of the embedding for the current model. """ return self.output_dim