# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= from __future__ import annotations import os from typing import Any, Optional from openai import OpenAI from camel.embeddings.base import BaseEmbedding from camel.utils import api_keys_required class OpenAICompatibleEmbedding(BaseEmbedding[str]): r"""Provides text embedding functionalities supporting OpenAI compatibility. Args: model_type (str): The model type to be used for text embeddings. api_key (str): The API key for authenticating with the model service. url (str): The url to the model service. """ def __init__( self, model_type: str, api_key: Optional[str] = None, url: Optional[str] = None, ) -> None: self.model_type = model_type self.output_dim: Optional[int] = None self._api_key = api_key or os.environ.get( "OPENAI_COMPATIBILIY_API_KEY" ) self._url = url or os.environ.get("OPENAI_COMPATIBILIY_API_BASE_URL") self._client = OpenAI( timeout=60, max_retries=3, api_key=self._api_key, base_url=self._url, ) @api_keys_required("OPENAI_COMPATIBILIY_API_KEY") def embed_list( self, objs: list[str], **kwargs: Any, ) -> list[list[float]]: r"""Generates embeddings for the given texts. Args: objs (list[str]): The texts for which to generate the embeddings. **kwargs (Any): Extra kwargs passed to the embedding API. Returns: list[list[float]]: A list that represents the generated embedding as a list of floating-point numbers. """ response = self._client.embeddings.create( input=objs, model=self.model_type, **kwargs, ) self.output_dim = len(response.data[0].embedding) return [data.embedding for data in response.data] def get_output_dim(self) -> int: r"""Returns the output dimension of the embeddings. Returns: int: The dimensionality of the embedding for the current model. """ if self.output_dim is None: raise ValueError( "Output dimension is not yet determined. Call " "'embed_list' first." ) return self.output_dim