๐Ÿฆ‰ OWL: Optimized Workforce Learning for General Multi-Agent Assistance in Real-World Task Automation

[![Documentation][docs-image]][docs-url] [![Discord][discord-image]][discord-url] [![X][x-image]][x-url] [![Reddit][reddit-image]][reddit-url] [![Wechat][wechat-image]][wechat-url] [![Wechat][owl-image]][owl-url] [![Hugging Face][huggingface-image]][huggingface-url] [![Star][star-image]][star-url] [![Package License][package-license-image]][package-license-url]

[Community](https://github.com/camel-ai/owl#community) | [Installation](https://github.com/camel-ai/owl#installation) | [Examples](https://github.com/camel-ai/camel/tree/HEAD/examples) | [Paper](https://arxiv.org/abs/2303.17760) | [Citation](https://github.com/camel-ai/owl#citation) | [Contributing](https://github.com/camel-ai/camel#contributing-to-camel-) | [CAMEL-AI](https://www.camel-ai.org/)

๐Ÿฆ‰ OWL is a cutting-edge framework for multi-agent collaboration that pushes the boundaries of task automation, built on top of the [CAMEL-AI Framework](https://github.com/camel-ai/camel). OWL achieves **58.18** average score on GAIA benchmark and ranks ๐Ÿ…๏ธ #1 among open-source frameworks. Our vision is to revolutionize how AI agents collaborate to solve real-world tasks. By leveraging dynamic agent interactions, OWL enables more natural, efficient, and robust task automation across diverse domains.

# ๐Ÿ“‹ Table of Contents - [๐Ÿ“‹ Table of Contents](#-table-of-contents) - [๐Ÿ”ฅ News](#-news) - [๐ŸŽฌ Demo Video](#-demo-video) - [๐Ÿ› ๏ธ Installation](#๏ธ-installation) - [**Clone the Github repository**](#clone-the-github-repository) - [**Set up Environment**](#set-up-environment) - [**Install Dependencies**](#install-dependencies) - [**Setup Environment Variables**](#setup-environment-variables) - [๐Ÿš€ Quick Start](#-quick-start) - [๐Ÿงช Experiments](#-experiments) - [โฑ๏ธ Future Plans](#๏ธ-future-plans) - [๐Ÿ“„ License](#-license) - [๐Ÿ–Š๏ธ Cite](#๏ธ-cite) - [๐Ÿ”ฅ Community](#-community) # ๐Ÿ”ฅ News - **[2025.03.07]**: We open-source the codebase of ๐Ÿฆ‰ OWL project. # ๐ŸŽฌ Demo Video https://private-user-images.githubusercontent.com/55657767/420211368-f29f477d-7eef-46da-8d7a-8f3bcf506da2.mp4 https://private-user-images.githubusercontent.com/55657767/420212194-e813fc05-136a-485f-8df3-f10d9b4e63ec.mp4 # ๐Ÿ› ๏ธ Installation ## **Clone the Github repository** ```bash git clone https://github.com/camel-ai/owl.git cd owl ``` ## **Set up Environment** Using Conda (recommended): ```bash conda create -n owl python=3.11 conda activate owl ``` Using venv (alternative): ```bash python -m venv owl_env # On Windows owl_env\Scripts\activate # On Unix or MacOS source owl_env/bin/activate ``` ## **Install Dependencies** ```bash python -m pip install -r requirements.txt playwright install ``` ## **Setup Environment Variables** In the `owl/.env_example` file, you will find all the necessary API keys along with the websites where you can register for each service. To use these API services, follow these steps: 1. *Copy and Rename*: Duplicate the `.env_example` file and rename the copy to `.env`. 2. *Fill in Your Keys*: Open the `.env` file and insert your API keys in the corresponding fields. # ๐Ÿš€ Quick Start Run the following minimal example: ```bash python owl/run.py ``` # ๐Ÿงช Experiments We provided a script to reproduce the results on GAIA. You can check the `run_gaia_roleplaying.py` file and run the following command: ```bash python run_gaia_roleplaying.py ``` # โฑ๏ธ Future Plans - [ ] Write a technical blog post detailing our exploration and insights in multi-agent collaboration in real-world tasks. - [ ] Enhance the toolkit ecosystem with more specialized tools for domain-specific tasks. - [ ] Develop more sophisticated agent interaction patterns and communication protocols # ๐Ÿ“„ License The source code is licensed under Apache 2.0. # ๐Ÿ–Š๏ธ Cite If you find this repo useful, please cite: ``` @misc{owl2025, title = {OWL: Optimized Workforce Learning for General Multi-Agent Assistance in Real-World Task Automation}, author = {{CAMEL-AI.org}}, howpublished = {\url{https://github.com/camel-ai/owl}}, note = {Accessed: 2025-03-07}, year = {2025} } ``` # ๐Ÿ”ฅ Community Join us for further discussions! ![](./assets/community.png) [docs-image]: https://img.shields.io/badge/Documentation-EB3ECC [docs-url]: https://camel-ai.github.io/camel/index.html [star-image]: https://img.shields.io/github/stars/camel-ai/owl?label=stars&logo=github&color=brightgreen [star-url]: https://github.com/camel-ai/camel/stargazers [package-license-image]: https://img.shields.io/badge/License-Apache_2.0-blue.svg [package-license-url]: https://github.com/camel-ai/camel/blob/master/licenses/LICENSE [colab-url]: https://colab.research.google.com/drive/1AzP33O8rnMW__7ocWJhVBXjKziJXPtim?usp=sharing [colab-image]: https://colab.research.google.com/assets/colab-badge.svg [huggingface-url]: https://huggingface.co/camel-ai [huggingface-image]: https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-CAMEL--AI-ffc107?color=ffc107&logoColor=white [discord-url]: https://discord.camel-ai.org/ [discord-image]: https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb [wechat-url]: https://ghli.org/camel/wechat.png [wechat-image]: https://img.shields.io/badge/WeChat-CamelAIOrg-brightgreen?logo=wechat&logoColor=white [x-url]: https://x.com/CamelAIOrg [x-image]: https://img.shields.io/twitter/follow/CamelAIOrg?style=social [twitter-image]: https://img.shields.io/twitter/follow/CamelAIOrg?style=social&color=brightgreen&logo=twitter [reddit-url]: https://www.reddit.com/r/CamelAI/ [reddit-image]: https://img.shields.io/reddit/subreddit-subscribers/CamelAI?style=plastic&logo=reddit&label=r%2FCAMEL&labelColor=white [ambassador-url]: https://www.camel-ai.org/community [owl-url]: ./assets/qr_code.jpg [owl-image]: https://img.shields.io/badge/WeChat-OWLProject-brightgreen?logo=wechat&logoColor=white