# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= from __future__ import annotations import base64 from abc import ABC, abstractmethod from io import BytesIO from math import ceil from typing import TYPE_CHECKING, List, Optional from PIL import Image from camel.logger import get_logger from camel.types import ( ModelType, OpenAIImageType, OpenAIVisionDetailType, UnifiedModelType, ) from camel.utils import dependencies_required if TYPE_CHECKING: from mistral_common.protocol.instruct.request import ( # type:ignore[import-not-found] ChatCompletionRequest, ) from camel.messages import OpenAIMessage LOW_DETAIL_TOKENS = 85 FIT_SQUARE_PIXELS = 2048 SHORTEST_SIDE_PIXELS = 768 SQUARE_PIXELS = 512 SQUARE_TOKENS = 170 EXTRA_TOKENS = 85 logger = get_logger(__name__) def get_model_encoding(value_for_tiktoken: str): r"""Get model encoding from tiktoken. Args: value_for_tiktoken: Model value for tiktoken. Returns: tiktoken.Encoding: Model encoding. """ import tiktoken try: encoding = tiktoken.encoding_for_model(value_for_tiktoken) except KeyError: if value_for_tiktoken in [ ModelType.O1.value, ModelType.O1_MINI.value, ModelType.O1_PREVIEW.value, ]: encoding = tiktoken.get_encoding("o200k_base") else: logger.info("Model not found. Using cl100k_base encoding.") encoding = tiktoken.get_encoding("cl100k_base") return encoding class BaseTokenCounter(ABC): r"""Base class for token counters of different kinds of models.""" @abstractmethod def count_tokens_from_messages(self, messages: List[OpenAIMessage]) -> int: r"""Count number of tokens in the provided message list. Args: messages (List[OpenAIMessage]): Message list with the chat history in OpenAI API format. Returns: int: Number of tokens in the messages. """ pass class OpenAITokenCounter(BaseTokenCounter): def __init__(self, model: UnifiedModelType): r"""Constructor for the token counter for OpenAI models. Args: model (UnifiedModelType): Model type for which tokens will be counted. """ self.model: str = model.value_for_tiktoken self.tokens_per_message: int self.tokens_per_name: int if self.model == "gpt-3.5-turbo-0301": # Every message follows <|start|>{role/name}\n{content}<|end|>\n self.tokens_per_message = 4 # If there's a name, the role is omitted self.tokens_per_name = -1 elif ("gpt-3.5-turbo" in self.model) or ("gpt-4" in self.model): self.tokens_per_message = 3 self.tokens_per_name = 1 elif ("o1" in self.model) or ("o3" in self.model): self.tokens_per_message = 2 self.tokens_per_name = 1 else: # flake8: noqa :E501 raise NotImplementedError( "Token counting for OpenAI Models is not presently " f"implemented for model {model}. " "See https://github.com/openai/openai-python/blob/main/chatml.md " "for information on how messages are converted to tokens. " "See https://platform.openai.com/docs/models/gpt-4" "or https://platform.openai.com/docs/models/gpt-3-5" "for information about openai chat models." ) self.encoding = get_model_encoding(self.model) def count_tokens_from_messages(self, messages: List[OpenAIMessage]) -> int: r"""Count number of tokens in the provided message list with the help of package tiktoken. Args: messages (List[OpenAIMessage]): Message list with the chat history in OpenAI API format. Returns: int: Number of tokens in the messages. """ num_tokens = 0 for message in messages: num_tokens += self.tokens_per_message for key, value in message.items(): if not isinstance(value, list): num_tokens += len( self.encoding.encode(str(value), disallowed_special=()) ) else: for item in value: if item["type"] == "text": num_tokens += len( self.encoding.encode( str( item["text"], ), disallowed_special=(), ) ) elif item["type"] == "image_url": image_str: str = item["image_url"]["url"] detail = item["image_url"]["detail"] image_prefix_format = "data:image/{};base64," image_prefix: Optional[str] = None for image_type in list(OpenAIImageType): # Find the correct image format image_prefix = image_prefix_format.format( image_type.value ) if image_prefix in image_str: break assert isinstance(image_prefix, str) encoded_image = image_str.split(image_prefix)[1] image_bytes = BytesIO( base64.b64decode(encoded_image) ) image = Image.open(image_bytes) num_tokens += self._count_tokens_from_image( image, OpenAIVisionDetailType(detail) ) if key == "name": num_tokens += self.tokens_per_name # every reply is primed with <|start|>assistant<|message|> num_tokens += 3 return num_tokens def _count_tokens_from_image( self, image: Image.Image, detail: OpenAIVisionDetailType ) -> int: r"""Count image tokens for OpenAI vision model. An :obj:`"auto"` resolution model will be treated as :obj:`"high"`. All images with :obj:`"low"` detail cost 85 tokens each. Images with :obj:`"high"` detail are first scaled to fit within a 2048 x 2048 square, maintaining their aspect ratio. Then, they are scaled such that the shortest side of the image is 768px long. Finally, we count how many 512px squares the image consists of. Each of those squares costs 170 tokens. Another 85 tokens are always added to the final total. For more details please refer to `OpenAI vision docs `_ Args: image (PIL.Image.Image): Image to count number of tokens. detail (OpenAIVisionDetailType): Image detail type to count number of tokens. Returns: int: Number of tokens for the image given a detail type. """ if detail == OpenAIVisionDetailType.LOW: return LOW_DETAIL_TOKENS width, height = image.size if width > FIT_SQUARE_PIXELS or height > FIT_SQUARE_PIXELS: scaling_factor = max(width, height) / FIT_SQUARE_PIXELS width = int(width / scaling_factor) height = int(height / scaling_factor) scaling_factor = min(width, height) / SHORTEST_SIDE_PIXELS scaled_width = int(width / scaling_factor) scaled_height = int(height / scaling_factor) h = ceil(scaled_height / SQUARE_PIXELS) w = ceil(scaled_width / SQUARE_PIXELS) total = EXTRA_TOKENS + SQUARE_TOKENS * h * w return total class AnthropicTokenCounter(BaseTokenCounter): @dependencies_required('anthropic') def __init__(self, model: str): r"""Constructor for the token counter for Anthropic models. Args: model (str): The name of the Anthropic model being used. """ from anthropic import Anthropic self.client = Anthropic() self.model = model @dependencies_required('anthropic') def count_tokens_from_messages(self, messages: List[OpenAIMessage]) -> int: r"""Count number of tokens in the provided message list using loaded tokenizer specific for this type of model. Args: messages (List[OpenAIMessage]): Message list with the chat history in OpenAI API format. Returns: int: Number of tokens in the messages. """ from anthropic.types import MessageParam return self.client.messages.count_tokens( messages=[ MessageParam( content=str(msg["content"]), role="user" if msg["role"] == "user" else "assistant", ) for msg in messages ], model=self.model, ).input_tokens class GeminiTokenCounter(BaseTokenCounter): def __init__(self, model_type: UnifiedModelType): r"""Constructor for the token counter for Gemini models. Args: model_type (UnifiedModelType): Model type for which tokens will be counted. """ import google.generativeai as genai self._client = genai.GenerativeModel(model_type) def count_tokens_from_messages(self, messages: List[OpenAIMessage]) -> int: r"""Count number of tokens in the provided message list using loaded tokenizer specific for this type of model. Args: messages (List[OpenAIMessage]): Message list with the chat history in OpenAI API format. Returns: int: Number of tokens in the messages. """ converted_messages = [] for message in messages: role = message.get('role') if role == 'assistant': role_to_gemini = 'model' else: role_to_gemini = 'user' converted_message = { "role": role_to_gemini, "parts": message.get("content"), } converted_messages.append(converted_message) return self._client.count_tokens(converted_messages).total_tokens class LiteLLMTokenCounter(BaseTokenCounter): def __init__(self, model_type: UnifiedModelType): r"""Constructor for the token counter for LiteLLM models. Args: model_type (UnifiedModelType): Model type for which tokens will be counted. """ self.model_type = model_type self._token_counter = None self._completion_cost = None @property def token_counter(self): if self._token_counter is None: from litellm import token_counter self._token_counter = token_counter return self._token_counter @property def completion_cost(self): if self._completion_cost is None: from litellm import completion_cost self._completion_cost = completion_cost return self._completion_cost def count_tokens_from_messages(self, messages: List[OpenAIMessage]) -> int: r"""Count number of tokens in the provided message list using the tokenizer specific to this type of model. Args: messages (List[OpenAIMessage]): Message list with the chat history in LiteLLM API format. Returns: int: Number of tokens in the messages. """ return self.token_counter(model=self.model_type, messages=messages) def calculate_cost_from_response(self, response: dict) -> float: r"""Calculate the cost of the given completion response. Args: response (dict): The completion response from LiteLLM. Returns: float: The cost of the completion call in USD. """ return self.completion_cost(completion_response=response) class MistralTokenCounter(BaseTokenCounter): def __init__(self, model_type: ModelType): r"""Constructor for the token counter for Mistral models. Args: model_type (ModelType): Model type for which tokens will be counted. """ from mistral_common.tokens.tokenizers.mistral import ( # type:ignore[import-not-found] MistralTokenizer, ) self.model_type = model_type # Determine the model type and set the tokenizer accordingly model_name = ( "codestral-22b" if self.model_type in { ModelType.MISTRAL_CODESTRAL, ModelType.MISTRAL_CODESTRAL_MAMBA, } else self.model_type ) self.tokenizer = MistralTokenizer.from_model(model_name) def count_tokens_from_messages(self, messages: List[OpenAIMessage]) -> int: r"""Count number of tokens in the provided message list using loaded tokenizer specific for this type of model. Args: messages (List[OpenAIMessage]): Message list with the chat history in OpenAI API format. Returns: int: Total number of tokens in the messages. """ total_tokens = 0 for msg in messages: tokens = self.tokenizer.encode_chat_completion( self._convert_response_from_openai_to_mistral(msg) ).tokens total_tokens += len(tokens) return total_tokens def _convert_response_from_openai_to_mistral( self, openai_msg: OpenAIMessage ) -> ChatCompletionRequest: r"""Convert an OpenAI message to a Mistral ChatCompletionRequest. Args: openai_msg (OpenAIMessage): An individual message with OpenAI format. Returns: ChatCompletionRequest: The converted message in Mistral's request format. """ from mistral_common.protocol.instruct.request import ( ChatCompletionRequest, # type:ignore[import-not-found] ) mistral_request = ChatCompletionRequest( # type: ignore[type-var] model=self.model_type, messages=[openai_msg], ) return mistral_request