# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= import time from typing import Any, Dict, List, Optional, Union from openai import Stream from camel.messages import OpenAIMessage from camel.models import BaseModelBackend from camel.types import ( ChatCompletion, ChatCompletionChunk, ChatCompletionMessage, Choice, CompletionUsage, ModelType, ) from camel.utils import BaseTokenCounter class StubTokenCounter(BaseTokenCounter): def count_tokens_from_messages(self, messages: List[OpenAIMessage]) -> int: r"""Token counting for STUB models, directly returning a constant. Args: messages (List[OpenAIMessage]): Message list with the chat history in OpenAI API format. Returns: int: A constant to act as the number of the tokens in the messages. """ return 10 class StubModel(BaseModelBackend): r"""A dummy model used for unit tests.""" model_type = ModelType.STUB def __init__( self, model_type: Union[ModelType, str], model_config_dict: Optional[Dict[str, Any]] = None, api_key: Optional[str] = None, url: Optional[str] = None, token_counter: Optional[BaseTokenCounter] = None, ) -> None: r"""All arguments are unused for the dummy model.""" super().__init__( model_type, model_config_dict, api_key, url, token_counter ) @property def token_counter(self) -> BaseTokenCounter: r"""Initialize the token counter for the model backend. Returns: BaseTokenCounter: The token counter following the model's tokenization style. """ if not self._token_counter: self._token_counter = StubTokenCounter() return self._token_counter def run( self, messages: List[OpenAIMessage] ) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]: r"""Run fake inference by returning a fixed string. All arguments are unused for the dummy model. Returns: Dict[str, Any]: Response in the OpenAI API format. """ ARBITRARY_STRING = "Lorem Ipsum" response: ChatCompletion = ChatCompletion( id="stub_model_id", model="stub", object="chat.completion", created=int(time.time()), choices=[ Choice( finish_reason="stop", index=0, message=ChatCompletionMessage( content=ARBITRARY_STRING, role="assistant", ), logprobs=None, ) ], usage=CompletionUsage( completion_tokens=10, prompt_tokens=10, total_tokens=20, ), ) return response def check_model_config(self): r"""Directly pass the check on arguments to STUB model.""" pass