# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= import os from typing import Any, Dict, List, Optional, Union from openai import OpenAI, Stream from openai.types.chat import ( ChatCompletion, ChatCompletionChunk, ) from camel.configs import NVIDIA_API_PARAMS, NvidiaConfig from camel.messages import OpenAIMessage from camel.models import BaseModelBackend from camel.types import ModelType from camel.utils import BaseTokenCounter, OpenAITokenCounter, api_keys_required class NvidiaModel(BaseModelBackend): r"""NVIDIA API in a unified BaseModelBackend interface. Args: model_type (Union[ModelType, str]): Model for which a backend is created, one of NVIDIA series. model_config_dict (Optional[Dict[str, Any]], optional): A dictionary that will be fed into:obj:`openai.ChatCompletion.create()`. If :obj:`None`, :obj:`NvidiaConfig().as_dict()` will be used. (default: :obj:`None`) api_key (Optional[str], optional): The API key for authenticating with the NVIDIA service. (default: :obj:`None`) url (Optional[str], optional): The url to the NVIDIA service. (default: :obj:`None`) token_counter (Optional[BaseTokenCounter], optional): Token counter to use for the model. If not provided, :obj:`OpenAITokenCounter( ModelType.GPT_4)` will be used. (default: :obj:`None`) """ def __init__( self, model_type: Union[ModelType, str], model_config_dict: Optional[Dict[str, Any]] = None, api_key: Optional[str] = None, url: Optional[str] = None, token_counter: Optional[BaseTokenCounter] = None, ) -> None: if model_config_dict is None: model_config_dict = NvidiaConfig().as_dict() api_key = api_key or os.environ.get("NVIDIA_API_KEY") url = url or os.environ.get( "NVIDIA_API_BASE_URL", "https://integrate.api.nvidia.com/v1" ) super().__init__( model_type, model_config_dict, api_key, url, token_counter ) self._client = OpenAI( timeout=60, max_retries=3, api_key=self._api_key, base_url=self._url, ) @api_keys_required("NVIDIA_API_KEY") def run( self, messages: List[OpenAIMessage], ) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]: r"""Runs inference of NVIDIA chat completion. Args: messages (List[OpenAIMessage]): Message list with the chat history in OpenAI API format. Returns: Union[ChatCompletion, Stream[ChatCompletionChunk]]: `ChatCompletion` in the non-stream mode, or `Stream[ChatCompletionChunk]` in the stream mode. """ # Remove tool-related parameters if no tools are specified config = dict(self.model_config_dict) if not config.get('tools'): # None or empty list config.pop('tools', None) config.pop('tool_choice', None) response = self._client.chat.completions.create( messages=messages, model=self.model_type, **config, ) return response @property def token_counter(self) -> BaseTokenCounter: r"""Initialize the token counter for the model backend. Returns: OpenAITokenCounter: The token counter following the model's tokenization style. """ if not self._token_counter: self._token_counter = OpenAITokenCounter(ModelType.GPT_4O_MINI) return self._token_counter def check_model_config(self): r"""Check whether the model configuration contains any unexpected arguments to NVIDIA API. Raises: ValueError: If the model configuration dictionary contains any unexpected arguments to NVIDIA API. """ for param in self.model_config_dict: if param not in NVIDIA_API_PARAMS: raise ValueError( f"Unexpected argument `{param}` is " "input into NVIDIA model backend." ) @property def stream(self) -> bool: r"""Returns whether the model is in stream mode, which sends partial results each time. Returns: bool: Whether the model is in stream mode. """ return self.model_config_dict.get('stream', False)