Community contribution - cooking assistant (#375)
Browse files
community_usecase/cooking-assistant/README.md
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Personal Dietician
|
2 |
+
|
3 |
+
This code example searches for recipes on the internet based on the ingredients you have, refines the content based on a dieterary restriction and generates shopping lists.
|
4 |
+
|
5 |
+
## How to use
|
6 |
+
|
7 |
+
1. Set up the OPENAI api key in the .env file
|
8 |
+
|
9 |
+
```bash
|
10 |
+
OPENAI_API_KEY = 'xxx'
|
11 |
+
```
|
12 |
+
|
13 |
+
2. Copy the python script to the owl/examples folder.
|
14 |
+
|
15 |
+
3. Run the script
|
16 |
+
|
17 |
+
```bash
|
18 |
+
python run_gpt4o.py
|
19 |
+
```
|
20 |
+
|
21 |
+
4. You can find the entire thought process of the agent within the log file.
|
22 |
+
|
23 |
+
5. Demo Link - https://drive.google.com/drive/folders/10LnMEMf_xQGojHyTAS57vI7oOmjvuKPE?usp=sharing
|
community_usecase/cooking-assistant/run_gpt4o.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
import json
|
4 |
+
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from camel.models import ModelFactory
|
7 |
+
from camel.types import ModelPlatformType
|
8 |
+
|
9 |
+
from camel.toolkits import (
|
10 |
+
SearchToolkit,
|
11 |
+
BrowserToolkit,
|
12 |
+
)
|
13 |
+
from camel.societies import RolePlaying
|
14 |
+
from camel.logger import set_log_level, get_logger
|
15 |
+
|
16 |
+
|
17 |
+
from owl.utils import run_society
|
18 |
+
import pathlib
|
19 |
+
|
20 |
+
base_dir = pathlib.Path(__file__).parent.parent
|
21 |
+
env_path = base_dir / "owl" / ".env"
|
22 |
+
load_dotenv(dotenv_path=str(env_path))
|
23 |
+
|
24 |
+
set_log_level(level="DEBUG")
|
25 |
+
logger = get_logger(__name__)
|
26 |
+
file_handler = logging.FileHandler("cooking_companion.log")
|
27 |
+
file_handler.setLevel(logging.DEBUG)
|
28 |
+
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
29 |
+
file_handler.setFormatter(formatter)
|
30 |
+
logger.addHandler(file_handler)
|
31 |
+
|
32 |
+
root_logger = logging.getLogger()
|
33 |
+
root_logger.addHandler(file_handler)
|
34 |
+
|
35 |
+
|
36 |
+
def construct_cooking_society(task: str) -> RolePlaying:
|
37 |
+
"""Construct a society of agents for the cooking companion.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
task (str): The cooking-related task to be addressed.
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
RolePlaying: A configured society of agents for the cooking companion.
|
44 |
+
"""
|
45 |
+
models = {
|
46 |
+
"user": ModelFactory.create(
|
47 |
+
model_platform=ModelPlatformType.OPENAI_COMPATIBLE_MODEL,
|
48 |
+
model_type="gpt-4o",
|
49 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
50 |
+
model_config_dict={"temperature": 0.4},
|
51 |
+
),
|
52 |
+
"assistant": ModelFactory.create(
|
53 |
+
model_platform=ModelPlatformType.OPENAI_COMPATIBLE_MODEL,
|
54 |
+
model_type="gpt-4o",
|
55 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
56 |
+
model_config_dict={"temperature": 0.4},
|
57 |
+
),
|
58 |
+
"recipe_analyst": ModelFactory.create(
|
59 |
+
model_platform=ModelPlatformType.OPENAI_COMPATIBLE_MODEL,
|
60 |
+
model_type="gpt-4o",
|
61 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
62 |
+
model_config_dict={"temperature": 0.2},
|
63 |
+
),
|
64 |
+
"planning": ModelFactory.create(
|
65 |
+
model_platform=ModelPlatformType.OPENAI_COMPATIBLE_MODEL,
|
66 |
+
model_type="gpt-4o",
|
67 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
68 |
+
model_config_dict={"temperature": 0.3},
|
69 |
+
),
|
70 |
+
}
|
71 |
+
|
72 |
+
browser_toolkit = BrowserToolkit(
|
73 |
+
headless=False,
|
74 |
+
web_agent_model=models["recipe_analyst"],
|
75 |
+
planning_agent_model=models["planning"],
|
76 |
+
)
|
77 |
+
|
78 |
+
tools = [
|
79 |
+
*browser_toolkit.get_tools(),
|
80 |
+
SearchToolkit().search_duckduckgo,
|
81 |
+
]
|
82 |
+
|
83 |
+
user_agent_kwargs = {"model": models["user"]}
|
84 |
+
assistant_agent_kwargs = {"model": models["assistant"], "tools": tools}
|
85 |
+
|
86 |
+
task_kwargs = {
|
87 |
+
"task_prompt": task,
|
88 |
+
"with_task_specify": False,
|
89 |
+
}
|
90 |
+
|
91 |
+
society = RolePlaying(
|
92 |
+
**task_kwargs,
|
93 |
+
user_role_name="user",
|
94 |
+
user_agent_kwargs=user_agent_kwargs,
|
95 |
+
assistant_role_name="cooking_assistant",
|
96 |
+
assistant_agent_kwargs=assistant_agent_kwargs,
|
97 |
+
)
|
98 |
+
|
99 |
+
return society
|
100 |
+
|
101 |
+
|
102 |
+
def analyze_chat_history(chat_history):
|
103 |
+
"""Analyze chat history and extract tool call information."""
|
104 |
+
print("\n============ Tool Call Analysis ============")
|
105 |
+
logger.info("========== Starting tool call analysis ==========")
|
106 |
+
|
107 |
+
tool_calls = []
|
108 |
+
for i, message in enumerate(chat_history):
|
109 |
+
if message.get("role") == "assistant" and "tool_calls" in message:
|
110 |
+
for tool_call in message.get("tool_calls", []):
|
111 |
+
if tool_call.get("type") == "function":
|
112 |
+
function = tool_call.get("function", {})
|
113 |
+
tool_info = {
|
114 |
+
"call_id": tool_call.get("id"),
|
115 |
+
"name": function.get("name"),
|
116 |
+
"arguments": function.get("arguments"),
|
117 |
+
"message_index": i,
|
118 |
+
}
|
119 |
+
tool_calls.append(tool_info)
|
120 |
+
print(f"Tool Call: {function.get('name')} Args: {function.get('arguments')}")
|
121 |
+
logger.info(f"Tool Call: {function.get('name')} Args: {function.get('arguments')}")
|
122 |
+
|
123 |
+
elif message.get("role") == "tool" and "tool_call_id" in message:
|
124 |
+
for tool_call in tool_calls:
|
125 |
+
if tool_call.get("call_id") == message.get("tool_call_id"):
|
126 |
+
result = message.get("content", "")
|
127 |
+
result_summary = result[:100] + "..." if len(result) > 100 else result
|
128 |
+
print(f"Tool Result: {tool_call.get('name')} Return: {result_summary}")
|
129 |
+
logger.info(f"Tool Result: {tool_call.get('name')} Return: {result_summary}")
|
130 |
+
|
131 |
+
print(f"Total tool calls found: {len(tool_calls)}")
|
132 |
+
logger.info(f"Total tool calls found: {len(tool_calls)}")
|
133 |
+
logger.info("========== Finished tool call analysis ==========")
|
134 |
+
|
135 |
+
with open("cooking_chat_history.json", "w", encoding="utf-8") as f:
|
136 |
+
json.dump(chat_history, f, ensure_ascii=False, indent=2)
|
137 |
+
|
138 |
+
print("Records saved to cooking_chat_history.json")
|
139 |
+
print("============ Analysis Complete ============\n")
|
140 |
+
|
141 |
+
|
142 |
+
def run_cooking_companion():
|
143 |
+
task = "I have chicken breast, broccoli, garlic, and pasta. I'm looking for a quick dinner recipe that's healthy. I'm also trying to reduce my sodium intake. Search the internet for a recipe, modify it for low sodium, and create a shopping list for any additional ingredients I need?"
|
144 |
+
society = construct_cooking_society(task)
|
145 |
+
answer, chat_history, token_count = run_society(society)
|
146 |
+
|
147 |
+
# Record tool usage history
|
148 |
+
analyze_chat_history(chat_history)
|
149 |
+
print(f"\033[94mAnswer: {answer}\033[0m")
|
150 |
+
|
151 |
+
|
152 |
+
if __name__ == "__main__":
|
153 |
+
run_cooking_companion()
|