|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import sys |
|
from dotenv import load_dotenv |
|
from camel.models import ModelFactory |
|
from camel.toolkits import ( |
|
CodeExecutionToolkit, |
|
ExcelToolkit, |
|
ImageAnalysisToolkit, |
|
SearchToolkit, |
|
BrowserToolkit, |
|
FileWriteToolkit, |
|
) |
|
from camel.types import ModelPlatformType |
|
|
|
from owl.utils import run_society |
|
|
|
from camel.societies import RolePlaying |
|
|
|
from camel.logger import set_log_level |
|
|
|
import pathlib |
|
|
|
base_dir = pathlib.Path(__file__).parent.parent |
|
env_path = base_dir / "owl" / ".env" |
|
load_dotenv(dotenv_path=str(env_path)) |
|
|
|
set_log_level(level="DEBUG") |
|
|
|
|
|
def construct_society(question: str) -> RolePlaying: |
|
r"""Construct a society of agents based on the given question. |
|
|
|
Args: |
|
question (str): The task or question to be addressed by the society. |
|
|
|
Returns: |
|
RolePlaying: A configured society of agents ready to address the question. |
|
""" |
|
|
|
|
|
models = { |
|
"user": ModelFactory.create( |
|
model_platform=ModelPlatformType.OLLAMA, |
|
model_type="qwen2.5:72b", |
|
url="http://localhost:11434/v1", |
|
model_config_dict={"temperature": 0.8, "max_tokens": 1000000}, |
|
), |
|
"assistant": ModelFactory.create( |
|
model_platform=ModelPlatformType.OLLAMA, |
|
model_type="qwen2.5:72b", |
|
url="http://localhost:11434/v1", |
|
model_config_dict={"temperature": 0.2, "max_tokens": 1000000}, |
|
), |
|
"browsing": ModelFactory.create( |
|
model_platform=ModelPlatformType.OLLAMA, |
|
model_type="llava:latest", |
|
url="http://localhost:11434/v1", |
|
model_config_dict={"temperature": 0.4, "max_tokens": 1000000}, |
|
), |
|
"planning": ModelFactory.create( |
|
model_platform=ModelPlatformType.OLLAMA, |
|
model_type="qwen2.5:72b", |
|
url="http://localhost:11434/v1", |
|
model_config_dict={"temperature": 0.4, "max_tokens": 1000000}, |
|
), |
|
"image": ModelFactory.create( |
|
model_platform=ModelPlatformType.OLLAMA, |
|
model_type="llava:latest", |
|
url="http://localhost:11434/v1", |
|
model_config_dict={"temperature": 0.4, "max_tokens": 1000000}, |
|
), |
|
} |
|
|
|
|
|
tools = [ |
|
*BrowserToolkit( |
|
headless=False, |
|
web_agent_model=models["browsing"], |
|
planning_agent_model=models["planning"], |
|
).get_tools(), |
|
*CodeExecutionToolkit(sandbox="subprocess", verbose=True).get_tools(), |
|
*ImageAnalysisToolkit(model=models["image"]).get_tools(), |
|
SearchToolkit().search_duckduckgo, |
|
|
|
SearchToolkit().search_wiki, |
|
*ExcelToolkit().get_tools(), |
|
*FileWriteToolkit(output_dir="./").get_tools(), |
|
] |
|
|
|
|
|
user_agent_kwargs = {"model": models["user"]} |
|
assistant_agent_kwargs = {"model": models["assistant"], "tools": tools} |
|
|
|
|
|
task_kwargs = { |
|
"task_prompt": question, |
|
"with_task_specify": False, |
|
} |
|
|
|
|
|
society = RolePlaying( |
|
**task_kwargs, |
|
user_role_name="user", |
|
user_agent_kwargs=user_agent_kwargs, |
|
assistant_role_name="assistant", |
|
assistant_agent_kwargs=assistant_agent_kwargs, |
|
) |
|
|
|
return society |
|
|
|
|
|
def main(): |
|
r"""Main function to run the OWL system with an example question.""" |
|
|
|
default_task = "Navigate to Amazon.com and identify one product that is attractive to coders. Please provide me with the product name and price. No need to verify your answer." |
|
|
|
|
|
task = sys.argv[1] if len(sys.argv) > 1 else default_task |
|
|
|
|
|
society = construct_society(task) |
|
answer, chat_history, token_count = run_society(society) |
|
|
|
|
|
print(f"\033[94mAnswer: {answer}\033[0m") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|