IAGO / examples /run_gaia_roleplaying.py
Wendong-Fan's picture
fix
6404ebc
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from dotenv import load_dotenv
import os
from camel.models import ModelFactory
from camel.logger import get_logger
from camel.toolkits import (
AudioAnalysisToolkit,
CodeExecutionToolkit,
ExcelToolkit,
ImageAnalysisToolkit,
SearchToolkit,
VideoAnalysisToolkit,
BrowserToolkit,
FileWriteToolkit,
)
from camel.types import ModelPlatformType, ModelType
from camel.configs import ChatGPTConfig
from owl.utils import GAIABenchmark
from camel.logger import set_log_level
import pathlib
base_dir = pathlib.Path(__file__).parent.parent
env_path = base_dir / "owl" / ".env"
load_dotenv(dotenv_path=str(env_path))
set_log_level(level="DEBUG")
logger = get_logger(__name__)
# Configuration
LEVEL = 1
SAVE_RESULT = True
test_idx = [0]
def main():
"""Main function to run the GAIA benchmark."""
# Create cache directory
cache_dir = "tmp/"
os.makedirs(cache_dir, exist_ok=True)
result_dir = "results/"
os.makedirs(result_dir, exist_ok=True)
# Create models for different components
models = {
"user": ModelFactory.create(
model_platform=ModelPlatformType.OPENAI,
model_type=ModelType.GPT_4O,
model_config_dict=ChatGPTConfig(temperature=0, top_p=1).as_dict(),
),
"assistant": ModelFactory.create(
model_platform=ModelPlatformType.OPENAI,
model_type=ModelType.GPT_4O,
model_config_dict=ChatGPTConfig(temperature=0, top_p=1).as_dict(),
),
"browsing": ModelFactory.create(
model_platform=ModelPlatformType.OPENAI,
model_type=ModelType.GPT_4O,
model_config_dict=ChatGPTConfig(temperature=0, top_p=1).as_dict(),
),
"planning": ModelFactory.create(
model_platform=ModelPlatformType.OPENAI,
model_type=ModelType.GPT_4O,
model_config_dict=ChatGPTConfig(temperature=0, top_p=1).as_dict(),
),
"video": ModelFactory.create(
model_platform=ModelPlatformType.OPENAI,
model_type=ModelType.GPT_4O,
model_config_dict=ChatGPTConfig(temperature=0, top_p=1).as_dict(),
),
"image": ModelFactory.create(
model_platform=ModelPlatformType.OPENAI,
model_type=ModelType.GPT_4O,
model_config_dict=ChatGPTConfig(temperature=0, top_p=1).as_dict(),
),
}
# Configure toolkits
tools = [
*BrowserToolkit(
headless=False, # Set to True for headless mode (e.g., on remote servers)
web_agent_model=models["browsing"],
planning_agent_model=models["planning"],
).get_tools(),
*VideoAnalysisToolkit(
model=models["video"]
).get_tools(), # This requires OpenAI Key
*AudioAnalysisToolkit().get_tools(), # This requires OpenAI Key
*CodeExecutionToolkit(sandbox="subprocess", verbose=True).get_tools(),
*ImageAnalysisToolkit(model=models["image"]).get_tools(),
*SearchToolkit().get_tools(),
*ExcelToolkit().get_tools(),
*FileWriteToolkit(output_dir="./").get_tools(),
]
# Configure agent roles and parameters
user_agent_kwargs = {"model": models["user"]}
assistant_agent_kwargs = {"model": models["assistant"], "tools": tools}
# Initialize benchmark
benchmark = GAIABenchmark(data_dir="data/gaia", save_to="results/result.json")
# Print benchmark information
print(f"Number of validation examples: {len(benchmark.valid)}")
print(f"Number of test examples: {len(benchmark.test)}")
# Run benchmark
result = benchmark.run(
on="valid",
level=LEVEL,
idx=test_idx,
save_result=SAVE_RESULT,
user_role_name="user",
user_agent_kwargs=user_agent_kwargs,
assistant_role_name="assistant",
assistant_agent_kwargs=assistant_agent_kwargs,
)
# Output results
logger.info(f"Correct: {result['correct']}, Total: {result['total']}")
logger.info(f"Accuracy: {result['accuracy']}")
if __name__ == "__main__":
main()