|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Any, Callable, Dict, Optional, Set, TypeVar, Union |
|
|
|
from camel.interpreters import BaseInterpreter, SubprocessInterpreter |
|
from camel.types import RoleType |
|
from camel.utils import get_system_information |
|
|
|
T = TypeVar('T') |
|
|
|
|
|
def return_prompt_wrapper( |
|
cls: Any, |
|
func: Callable, |
|
) -> Callable[..., Union[Any, tuple]]: |
|
r"""Wrapper that converts the return value of a function to an input |
|
class instance if it's a string. |
|
|
|
Args: |
|
cls (Any): The class to convert to. |
|
func (Callable): The function to decorate. |
|
|
|
Returns: |
|
Callable[..., Union[Any, str]]: Decorated function that |
|
returns the decorated class instance if the return value is a |
|
string. |
|
""" |
|
|
|
def wrapper(*args: Any, **kwargs: Any) -> Union[Any, str]: |
|
r"""Wrapper function that performs the conversion to :obj:`TextPrompt` |
|
instance. |
|
|
|
Args: |
|
*args (Any): Variable length argument list. |
|
**kwargs (Any): Arbitrary keyword arguments. |
|
|
|
Returns: |
|
Union[Any, str]: The converted return value. |
|
""" |
|
result = func(*args, **kwargs) |
|
if isinstance(result, str) and not isinstance(result, cls): |
|
return cls(result) |
|
elif isinstance(result, tuple): |
|
new_result = tuple( |
|
cls(item) |
|
if isinstance(item, str) and not isinstance(item, cls) |
|
else item |
|
for item in result |
|
) |
|
return new_result |
|
return result |
|
|
|
|
|
wrapper.__name__ = func.__name__ |
|
wrapper.__doc__ = func.__doc__ |
|
|
|
return wrapper |
|
|
|
|
|
def wrap_prompt_functions(cls: T) -> T: |
|
r"""Decorator that wraps functions of a class inherited from :obj:`str` |
|
with the :obj:`return_text_prompt` decorator. |
|
|
|
Args: |
|
cls (type): The class to decorate. |
|
|
|
Returns: |
|
type: Decorated class with wrapped functions. |
|
""" |
|
excluded_attrs = {'__init__', '__new__', '__str__', '__repr__'} |
|
for attr_name in dir(cls): |
|
attr_value = getattr(cls, attr_name) |
|
if callable(attr_value) and attr_name not in excluded_attrs: |
|
if inspect.isroutine(attr_value): |
|
setattr(cls, attr_name, return_prompt_wrapper(cls, attr_value)) |
|
return cls |
|
|
|
|
|
@wrap_prompt_functions |
|
class TextPrompt(str): |
|
r"""A class that represents a text prompt. The :obj:`TextPrompt` class |
|
extends the built-in :obj:`str` class to provide a property for retrieving |
|
the set of keywords in the prompt. |
|
|
|
Attributes: |
|
key_words (set): A set of strings representing the keywords in the |
|
prompt. |
|
""" |
|
|
|
@property |
|
def key_words(self) -> Set[str]: |
|
r"""Returns a set of strings representing the keywords in the prompt.""" |
|
from camel.utils import get_prompt_template_key_words |
|
|
|
return get_prompt_template_key_words(self) |
|
|
|
def format(self, *args: Any, **kwargs: Any) -> 'TextPrompt': |
|
r"""Overrides the built-in :obj:`str.format` method to allow for |
|
default values in the format string. This is used to allow formatting |
|
the partial string. |
|
|
|
Args: |
|
*args (Any): Variable length argument list. |
|
**kwargs (Any): Arbitrary keyword arguments. |
|
|
|
Returns: |
|
TextPrompt: A new :obj:`TextPrompt` object with the format string |
|
replaced with the formatted string. |
|
""" |
|
default_kwargs = {key: '{' + f'{key}' + '}' for key in self.key_words} |
|
default_kwargs.update(kwargs) |
|
return TextPrompt(super().format(*args, **default_kwargs)) |
|
|
|
|
|
@wrap_prompt_functions |
|
class CodePrompt(TextPrompt): |
|
r"""A class that represents a code prompt. It extends the :obj:`TextPrompt` |
|
class with a :obj:`code_type` property. |
|
|
|
Attributes: |
|
code_type (str, optional): The type of code. Defaults to None. |
|
""" |
|
|
|
def __new__(cls, *args: Any, **kwargs: Any) -> 'CodePrompt': |
|
r"""Creates a new instance of the :obj:`CodePrompt` class. |
|
|
|
Args: |
|
*args (Any): Positional arguments. |
|
**kwargs (Any): Keyword arguments. |
|
|
|
Returns: |
|
CodePrompt: The created :obj:`CodePrompt` instance. |
|
""" |
|
code_type = kwargs.pop('code_type', None) |
|
instance = super().__new__(cls, *args, **kwargs) |
|
instance._code_type = code_type |
|
return instance |
|
|
|
@property |
|
def code_type(self) -> Optional[str]: |
|
r"""Returns the type of code. |
|
|
|
Returns: |
|
Optional[str]: The type of code. |
|
""" |
|
return self._code_type |
|
|
|
def set_code_type(self, code_type: str) -> None: |
|
r"""Sets the type of code. |
|
|
|
Args: |
|
code_type (str): The type of code. |
|
""" |
|
self._code_type = code_type |
|
|
|
def execute( |
|
self, |
|
interpreter: Optional[BaseInterpreter] = None, |
|
**kwargs: Any, |
|
) -> str: |
|
r"""Executes the code string using the provided interpreter. |
|
|
|
This method runs a code string through either a specified interpreter |
|
or a default one. It supports additional keyword arguments for |
|
flexibility. |
|
|
|
Args: |
|
interpreter (Optional[BaseInterpreter]): The interpreter instance |
|
to use for execution. If `None`, a default interpreter is used. |
|
(default: :obj:`None`) |
|
**kwargs: Additional keyword arguments passed to the interpreter to |
|
run the code. |
|
|
|
Returns: |
|
str: The result of the code execution. If the execution fails, this |
|
should include sufficient information to diagnose and correct |
|
the issue. |
|
|
|
Raises: |
|
InterpreterError: If the code execution encounters errors that |
|
could be resolved by modifying or regenerating the code. |
|
""" |
|
if interpreter is None: |
|
execution_res = SubprocessInterpreter().run( |
|
self, self._code_type, **kwargs |
|
) |
|
else: |
|
execution_res = interpreter.run(self, self._code_type, **kwargs) |
|
return execution_res |
|
|
|
|
|
|
|
class TextPromptDict(Dict[Any, TextPrompt]): |
|
r"""A dictionary class that maps from key to :obj:`TextPrompt` object.""" |
|
|
|
EMBODIMENT_PROMPT = TextPrompt( |
|
"System information :" |
|
+ "\n".join( |
|
f"{key}: {value}" |
|
for key, value in get_system_information().items() |
|
) |
|
+ "\n" |
|
+ """You are the physical embodiment of the {role} who is working on solving a task: {task}. |
|
You can do things in the physical world including browsing the Internet, reading documents, drawing images, creating videos, executing code and so on. |
|
Your job is to perform the physical actions necessary to interact with the physical world. |
|
You will receive thoughts from the {role} and you will need to perform the actions described in the thoughts. |
|
You can write a series of simple commands in to act. |
|
You can perform a set of actions by calling the available functions. |
|
You should perform actions based on the descriptions of the functions. |
|
|
|
Here is your action space but it is not limited: |
|
{action_space} |
|
|
|
You can perform multiple actions. |
|
You can perform actions in any order. |
|
First, explain the actions you will perform and your reasons, then write code to implement your actions. |
|
If you decide to perform actions, you must write code to implement the actions. |
|
You may print intermediate results if necessary.""" |
|
) |
|
|
|
def __init__(self, *args: Any, **kwargs: Any) -> None: |
|
super().__init__(*args, **kwargs) |
|
self.update({RoleType.EMBODIMENT: self.EMBODIMENT_PROMPT}) |
|
|