File size: 12,189 Bytes
4ca8fdc 62da328 4ca8fdc ec6368b 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc ec6368b 4b904a3 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 4b904a3 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc c581f7d 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc c581f7d 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc 62da328 4ca8fdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from camel.toolkits.base import BaseToolkit
from camel.toolkits.function_tool import FunctionTool
from camel.toolkits import ImageAnalysisToolkit, ExcelToolkit
from camel.utils import retry_on_error
from camel.logger import get_logger
from camel.models import BaseModelBackend
from docx2markdown._docx_to_markdown import docx_to_markdown
from chunkr_ai import Chunkr
import requests
import mimetypes
import json
from typing import List, Optional, Tuple, Literal
from urllib.parse import urlparse
import os
import subprocess
import xmltodict
import nest_asyncio
nest_asyncio.apply()
logger = get_logger(__name__)
class DocumentProcessingToolkit(BaseToolkit):
r"""A class representing a toolkit for processing document and return the content of the document.
This class provides method for processing docx, pdf, pptx, etc. It cannot process excel files.
"""
def __init__(
self, cache_dir: Optional[str] = None, model: Optional[BaseModelBackend] = None
):
self.image_tool = ImageAnalysisToolkit(model=model)
# self.audio_tool = AudioAnalysisToolkit()
self.excel_tool = ExcelToolkit()
self.cache_dir = "tmp/"
if cache_dir:
self.cache_dir = cache_dir
@retry_on_error()
def extract_document_content(self, document_path: str) -> Tuple[bool, str]:
r"""Extract the content of a given document (or url) and return the processed text.
It may filter out some information, resulting in inaccurate content.
Args:
document_path (str): The path of the document to be processed, either a local path or a URL. It can process image, audio files, zip files and webpages, etc.
Returns:
Tuple[bool, str]: A tuple containing a boolean indicating whether the document was processed successfully, and the content of the document (if success).
"""
import asyncio
logger.debug(
f"Calling extract_document_content function with document_path=`{document_path}`"
)
if any(document_path.endswith(ext) for ext in [".jpg", ".jpeg", ".png"]):
res = self.image_tool.ask_question_about_image(
document_path, "Please make a detailed caption about the image."
)
return True, res
# if any(document_path.endswith(ext) for ext in ['.mp3', '.wav']):
# res = self.audio_tool.ask_question_about_audio(document_path, "Please transcribe the audio content to text.")
# return True, res
if any(document_path.endswith(ext) for ext in ["xls", "xlsx"]):
res = self.excel_tool.extract_excel_content(document_path)
return True, res
if any(document_path.endswith(ext) for ext in ["zip"]):
extracted_files = self._unzip_file(document_path)
return True, f"The extracted files are: {extracted_files}"
if any(document_path.endswith(ext) for ext in ["json", "jsonl", "jsonld"]):
with open(document_path, "r", encoding="utf-8") as f:
content = json.load(f)
f.close()
return True, content
if any(document_path.endswith(ext) for ext in ["py"]):
with open(document_path, "r", encoding="utf-8") as f:
content = f.read()
f.close()
return True, content
if any(document_path.endswith(ext) for ext in ["xml"]):
data = None
with open(document_path, "r", encoding="utf-8") as f:
content = f.read()
f.close()
try:
data = xmltodict.parse(content)
logger.debug(f"The extracted xml data is: {data}")
return True, data
except Exception:
logger.debug(f"The raw xml data is: {content}")
return True, content
if self._is_webpage(document_path):
extracted_text = self._extract_webpage_content(document_path)
return True, extracted_text
else:
# judge if url
parsed_url = urlparse(document_path)
is_url = all([parsed_url.scheme, parsed_url.netloc])
if not is_url:
if not os.path.exists(document_path):
return False, f"Document not found at path: {document_path}."
# if is docx file, use docx2markdown to convert it
if document_path.endswith(".docx"):
if is_url:
tmp_path = self._download_file(document_path)
else:
tmp_path = document_path
file_name = os.path.basename(tmp_path)
md_file_path = f"{file_name}.md"
docx_to_markdown(tmp_path, md_file_path)
# load content of md file
with open(md_file_path, "r") as f:
extracted_text = f.read()
f.close()
return True, extracted_text
try:
result = asyncio.run(self._extract_content_with_chunkr(document_path))
return True, result
except Exception as e:
logger.warning(
f"Error occurred while using Chunkr to process document: {e}"
)
if document_path.endswith(".pdf"):
# try using pypdf to extract text from pdf
try:
from PyPDF2 import PdfReader
if is_url:
tmp_path = self._download_file(document_path)
document_path = tmp_path
# Open file in binary mode for PdfReader
f = open(document_path, "rb")
reader = PdfReader(f)
extracted_text = ""
for page in reader.pages:
extracted_text += page.extract_text()
f.close()
return True, extracted_text
except Exception as pdf_error:
logger.error(
f"Error occurred while processing pdf: {pdf_error}"
)
return (
False,
f"Error occurred while processing pdf: {pdf_error}",
)
# If we get here, either it's not a PDF or PDF processing failed
logger.error(f"Error occurred while processing document: {e}")
return False, f"Error occurred while processing document: {e}"
def _is_webpage(self, url: str) -> bool:
r"""Judge whether the given URL is a webpage."""
try:
parsed_url = urlparse(url)
is_url = all([parsed_url.scheme, parsed_url.netloc])
if not is_url:
return False
path = parsed_url.path
file_type, _ = mimetypes.guess_type(path)
if file_type is not None and "text/html" in file_type:
return True
response = requests.head(url, allow_redirects=True, timeout=10)
content_type = response.headers.get("Content-Type", "").lower()
if "text/html" in content_type:
return True
else:
return False
except requests.exceptions.RequestException as e:
# raise RuntimeError(f"Error while checking the URL: {e}")
logger.warning(f"Error while checking the URL: {e}")
return False
except TypeError:
return True
@retry_on_error()
async def _extract_content_with_chunkr(
self,
document_path: str,
output_format: Literal["json", "markdown"] = "markdown",
) -> str:
chunkr = Chunkr(api_key=os.getenv("CHUNKR_API_KEY"))
result = await chunkr.upload(document_path)
# result = chunkr.upload(document_path)
if result.status == "Failed":
logger.error(
f"Error while processing document {document_path}: {result.message} using Chunkr."
)
return f"Error while processing document: {result.message}"
# extract document name
document_name = os.path.basename(document_path)
output_file_path: str
if output_format == "json":
output_file_path = f"{document_name}.json"
result.json(output_file_path)
elif output_format == "markdown":
output_file_path = f"{document_name}.md"
result.markdown(output_file_path)
else:
return "Invalid output format."
with open(output_file_path, "r") as f:
extracted_text = f.read()
f.close()
return extracted_text
@retry_on_error()
def _extract_webpage_content(self, url: str) -> str:
api_key = os.getenv("FIRECRAWL_API_KEY")
from firecrawl import FirecrawlApp
# Initialize the FirecrawlApp with your API key
app = FirecrawlApp(api_key=api_key)
data = app.crawl_url(
url, params={"limit": 1, "scrapeOptions": {"formats": ["markdown"]}}
)
logger.debug(f"Extractred data from {url}: {data}")
if len(data["data"]) == 0:
if data["success"]:
return "No content found on the webpage."
else:
return "Error while crawling the webpage."
return str(data["data"][0]["markdown"])
def _download_file(self, url: str):
r"""Download a file from a URL and save it to the cache directory."""
try:
response = requests.get(url, stream=True)
response.raise_for_status()
file_name = url.split("/")[-1]
file_path = os.path.join(self.cache_dir, file_name)
with open(file_path, "wb") as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
return file_path
except requests.exceptions.RequestException as e:
print(f"Error downloading the file: {e}")
def _get_formatted_time(self) -> str:
import time
return time.strftime("%m%d%H%M")
def _unzip_file(self, zip_path: str) -> List[str]:
if not zip_path.endswith(".zip"):
raise ValueError("Only .zip files are supported")
zip_name = os.path.splitext(os.path.basename(zip_path))[0]
extract_path = os.path.join(self.cache_dir, zip_name)
os.makedirs(extract_path, exist_ok=True)
try:
subprocess.run(["unzip", "-o", zip_path, "-d", extract_path], check=True)
except subprocess.CalledProcessError as e:
raise RuntimeError(f"Failed to unzip file: {e}")
extracted_files = []
for root, _, files in os.walk(extract_path):
for file in files:
extracted_files.append(os.path.join(root, file))
return extracted_files
def get_tools(self) -> List[FunctionTool]:
r"""Returns a list of FunctionTool objects representing the functions in the toolkit.
Returns:
List[FunctionTool]: A list of FunctionTool objects representing the functions in the toolkit.
"""
return [
FunctionTool(self.extract_document_content),
] # Added closing triple quotes here
|