File size: 6,687 Bytes
99d585a
 
 
 
 
 
 
 
 
 
 
 
 
03bf24f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0848a53
03bf24f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cc3429
6404ebc
03bf24f
 
 
 
 
 
0cc3429
03bf24f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from dotenv import load_dotenv

from camel.models import ModelFactory
from camel.toolkits import (
    ExcelToolkit,
    SearchToolkit,
    FileWriteToolkit,
    CodeExecutionToolkit,
    BrowserToolkit,
    VideoAnalysisToolkit,
    ImageAnalysisToolkit,
)
from camel.types import ModelPlatformType, ModelType
from camel.societies import RolePlaying
from camel.logger import set_log_level

from owl.utils import run_society, DocumentProcessingToolkit

import pathlib

# Set the log level to DEBUG for detailed debugging information
set_log_level(level="DEBUG")

# Get the parent directory of the current file and construct the path to the .env file
base_dir = pathlib.Path(__file__).parent.parent
env_path = base_dir / "owl" / ".env"
load_dotenv(dotenv_path=str(env_path))


def get_user_input(prompt):
    # Get user input and strip leading/trailing whitespace
    return input(prompt).strip()


def get_construct_params() -> dict[str, any]:
    # Welcome message
    print("Welcome to owl! Have fun!")

    # Select model platform type
    model_platforms = ModelPlatformType
    print("Please select the model platform type:")
    for i, platform in enumerate(model_platforms, 1):
        print(f"{i}. {platform}")
    model_platform_choice = int(
        get_user_input("Please enter the model platform number:")
    )
    selected_model_platform = list(model_platforms)[model_platform_choice - 1]
    print(f"The model platform you selected is: {selected_model_platform}")

    # Select model type
    models = ModelType
    print("Please select the model type:")
    for i, model in enumerate(models, 1):
        print(f"{i}. {model}")
    model_choice = int(get_user_input("Please enter the model number:"))
    selected_model = list(models)[model_choice - 1]
    print(f"The model you selected is: {selected_model}")

    # Select language
    languages = ["English", "Chinese"]
    print("Please select the language:")
    for i, lang in enumerate(languages, 1):
        print(f"{i}. {lang}")
    language_choice = int(get_user_input("Please enter the language number:"))
    selected_language = languages[language_choice - 1]
    print(f"The language you selected is: {selected_language}")

    # Enter the question
    question = get_user_input("Please enter your question:")
    print(f"Your question is: {question}")

    return {
        "language": selected_language,
        "model_type": selected_model,
        "model_platform": selected_model_platform,
        "question": question,
    }


def construct_society() -> RolePlaying:
    # Get user input parameters
    params = get_construct_params()
    question = params["question"]
    selected_model_type = params["model_type"]
    selected_model_platform = params["model_platform"]
    selected_language = params["language"]

    # Create model instances for different roles
    models = {
        "user": ModelFactory.create(
            model_platform=selected_model_platform,
            model_type=selected_model_type,
            model_config_dict={"temperature": 0},
        ),
        "assistant": ModelFactory.create(
            model_platform=selected_model_platform,
            model_type=selected_model_type,
            model_config_dict={"temperature": 0},
        ),
        "browsing": ModelFactory.create(
            model_platform=selected_model_platform,
            model_type=selected_model_type,
            model_config_dict={"temperature": 0},
        ),
        "planning": ModelFactory.create(
            model_platform=selected_model_platform,
            model_type=selected_model_type,
            model_config_dict={"temperature": 0},
        ),
        "video": ModelFactory.create(
            model_platform=selected_model_platform,
            model_type=selected_model_type,
            model_config_dict={"temperature": 0},
        ),
        "image": ModelFactory.create(
            model_platform=selected_model_platform,
            model_type=selected_model_type,
            model_config_dict={"temperature": 0},
        ),
        "document": ModelFactory.create(
            model_platform=selected_model_platform,
            model_type=selected_model_type,
            model_config_dict={"temperature": 0},
        ),
    }

    # Configure toolkits
    tools = [
        *BrowserToolkit(
            headless=False,
            web_agent_model=models["browsing"],
            planning_agent_model=models["planning"],
        ).get_tools(),
        *VideoAnalysisToolkit(model=models["video"]).get_tools(),
        *CodeExecutionToolkit(sandbox="subprocess", verbose=True).get_tools(),
        *ImageAnalysisToolkit(model=models["image"]).get_tools(),
        SearchToolkit().search_duckduckgo,
        SearchToolkit().search_google,
        SearchToolkit().search_wiki,
        SearchToolkit().search_baidu,
        SearchToolkit().search_bing,
        *ExcelToolkit().get_tools(),
        *DocumentProcessingToolkit(model=models["document"]).get_tools(),
        *FileWriteToolkit(output_dir="./").get_tools(),
    ]

    # Configure agent roles and parameters
    user_agent_kwargs = {"model": models["user"]}
    assistant_agent_kwargs = {"model": models["assistant"], "tools": tools}

    # Configure task parameters
    task_kwargs = {
        "task_prompt": question,
        "with_task_specify": False,
    }

    # Create and return the society
    society = RolePlaying(
        **task_kwargs,
        user_role_name="user",
        user_agent_kwargs=user_agent_kwargs,
        assistant_role_name="assistant",
        assistant_agent_kwargs=assistant_agent_kwargs,
        output_language=selected_language,
    )

    return society


def main():
    # Construct the society
    society = construct_society()
    # Run the society and get the answer, chat history, and token count
    answer, chat_history, token_count = run_society(society)
    # Print the answer
    print(f"\033[94mAnswer: {answer}\033[0m")


if __name__ == "__main__":
    main()