File size: 12,917 Bytes
6aee514 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
#main.py
import os
import logging
import time
from typing import Dict, Any, Callable, Optional
from pathlib import Path
import sys
# Add parent directory to path for OWL imports
sys.path.append('../')
from dotenv import load_dotenv
import numpy as np # Explicitly import numpy to avoid 'numpy' errors
from camel.models import ModelFactory
from camel.types import ModelPlatformType, ModelType
from camel.toolkits import (
SearchToolkit,
BrowserToolkit,
CodeExecutionToolkit
)
from camel.societies import RolePlaying
from camel.configs import ChatGPTConfig
from owl.utils import run_society # Official run_society with round_limit support
# Import prompt templates
from config.prompts import (
get_system_prompt,
get_company_research_prompt,
get_question_generator_prompt,
get_preparation_plan_prompt
)
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# Create the output directory for interview preparation materials
INTERVIEW_PREP_DIR = "./interview_prep"
os.makedirs(INTERVIEW_PREP_DIR, exist_ok=True)
def run_society_with_strict_limit(society, round_limit=5, progress_callback=None):
"""Wrapper around run_society to ensure round limit is strictly enforced
This implementation hijacks the step method to force termination after a specific number of rounds.
"""
# Track rounds manually
round_count = 0
# Save original step function
original_step = society.step
# Override the step method
def limited_step(*args, **kwargs):
nonlocal round_count
round_count += 1
# Report progress if callback is provided
if progress_callback and callable(progress_callback):
progress_callback(round_count, round_limit)
# Force termination after reaching the round limit
if round_count >= round_limit:
logger.info(f"Reached round limit of {round_limit}, forcibly terminating.")
# Force a TASK_DONE in the user response to trigger termination
result = original_step(*args, **kwargs)
if len(result) >= 2 and hasattr(result[1], 'msgs') and result[1].msgs and len(result[1].msgs) > 0:
result[1].msgs[0].content += "\n\nTASK_DONE"
result[1].terminated = True
return result
return original_step(*args, **kwargs)
# Replace the step method
society.step = limited_step
try:
# Run the conversation with the standard run_society function
answer, chat_history, token_count = run_society(society, round_limit=round_limit)
# Add a note about the conversation being truncated
if len(chat_history) > 0 and "truncated_note" not in chat_history[-1]:
chat_history[-1]["truncated_note"] = True
if "assistant" in chat_history[-1]:
chat_history[-1]["assistant"] += "\n\n[Note: This conversation was limited to maintain response quality.]"
return answer, chat_history, token_count
finally:
# Restore the original step method
society.step = original_step
def construct_interview_assistant(
job_description: str,
company_name: str,
detailed: bool = True,
limited_searches: bool = True
) -> RolePlaying:
"""
Construct a specialized interview preparation assistant using OWL.
"""
# Select model based on environment variables
if os.environ.get("OPENROUTER_API_KEY"):
logger.info("Using OpenRouter with Gemini model")
model = ModelFactory.create(
model_platform=ModelPlatformType.OPENAI_COMPATIBLE_MODEL,
api_key=os.environ.get("OPENROUTER_API_KEY"),
model_type="google/gemini-2.0-flash-001",
url="https://openrouter.ai/api/v1",
model_config_dict={
"temperature": 0.6,
"max_tokens": 4000, # Reduced from 10000 to avoid exceeding limits
# Do NOT use context_length - it's not a valid API parameter
}
)
elif os.environ.get("OPENAI_API_KEY"):
logger.info("Using OpenAI model (GPT-4)")
config = ChatGPTConfig(
temperature=0.3,
max_tokens=4000
)
model = ModelFactory.create(
model_platform=ModelPlatformType.OPENAI,
model_type=ModelType.GPT_4O,
model_config_dict=config.as_dict()
)
else:
raise ValueError("Either OPENAI_API_KEY or OPENROUTER_API_KEY must be set")
# Configure toolkits - Remove FileWriteToolkit as requested
essential_tools = [
SearchToolkit().search_duckduckgo,
SearchToolkit().search_wiki,
# Removed the FileWriteToolkit as requested
]
if os.environ.get("GOOGLE_API_KEY") and os.environ.get("SEARCH_ENGINE_ID"):
essential_tools.append(SearchToolkit().search_google)
if detailed:
tools = [
*essential_tools,
*BrowserToolkit(
headless=True,
web_agent_model=model,
planning_agent_model=model,
).get_tools(),
*CodeExecutionToolkit(sandbox="subprocess", verbose=True).get_tools(),
]
logger.info("Using full toolset for comprehensive results (detailed=True)")
else:
tools = essential_tools
logger.info("Using essential toolset for faster results (detailed=False)")
user_agent_kwargs = {"model": model}
assistant_agent_kwargs = {"model": model, "tools": tools}
# Build enhanced prompt asking for full, detailed output
base_prompt = get_system_prompt()
enhanced_prompt = f"""{base_prompt}
Task: Help me prepare for an interview at {company_name} for the position of {job_description}.
Requirements:
1. Provide a highly detailed, extremely comprehensive response (aim for at least 2000+ words).
2. Structure the output with clear sections, actionable insights, examples, and code where relevant.
3. Tailor the content specifically to {company_name} and the {job_description} role.
4. Do NOT truncate or summarize—provide the full explanation directly.
"""
task_kwargs = {
"task_prompt": enhanced_prompt,
"with_task_specify": False,
}
society = RolePlaying(
**task_kwargs,
user_role_name="job_seeker",
user_agent_kwargs=user_agent_kwargs,
assistant_role_name="interview_coach",
assistant_agent_kwargs=assistant_agent_kwargs,
)
# Try to set memory parameters to reduce context size
try:
# Try to access the context creator if it exists
if hasattr(society, '_context_creator') and hasattr(society._context_creator, 'max_tokens'):
society._context_creator.max_tokens = 4000
# Alternative approach through kwargs if available
elif hasattr(society, '_context_creator_kwargs'):
society._context_creator_kwargs = {"max_tokens": 4000}
except AttributeError:
logger.warning("Could not directly set memory parameters. Using default values.")
return society
def research_company(
company_name: str,
detailed: bool = True,
limited_searches: bool = True,
progress_callback: Optional[Callable] = None
) -> Dict[str, Any]:
start_time = time.time()
logging.info(f"Beginning company research for {company_name}")
base_prompt = get_company_research_prompt(company_name)
enhanced_prompt = f"""{base_prompt}
Please provide the most detailed, in-depth report possible, with no summarization or truncation.
Your response must include extensive coverage, code samples (if relevant), and be at least 2000 words long.
"""
society = construct_interview_assistant("", company_name, detailed=detailed, limited_searches=limited_searches)
society.task_prompt = enhanced_prompt
# Use our strict wrapper function to enforce limit at exactly 5 rounds
answer, chat_history, token_count = run_society_with_strict_limit(
society,
round_limit=5,
progress_callback=progress_callback
)
duration = time.time() - start_time
logging.info(f"Completed company research for {company_name} in {duration:.2f} seconds")
# Find any files that may have been generated
generated_files = [str(file) for file in Path(INTERVIEW_PREP_DIR).glob("*") if file.is_file()]
return {
"answer": answer,
"chat_history": chat_history,
"token_count": token_count,
"generated_files": generated_files,
"duration_seconds": duration
}
def generate_interview_questions(
job_role: str,
company_name: str,
detailed: bool = True,
limited_searches: bool = True,
progress_callback: Optional[Callable] = None
) -> Dict[str, Any]:
start_time = time.time()
logging.info(f"Starting question generation for {job_role} at {company_name} (detailed={detailed})")
try:
# Ensure numpy is available to prevent 'numpy' errors
import numpy as np
base_prompt = get_question_generator_prompt(job_role, company_name)
enhanced_prompt = f"""{base_prompt}
Please provide at least 50 highly specific questions with code examples, multiple solution approaches,
and extremely thorough explanations. Aim for 3000+ words, with no truncation or summarization.
"""
society = construct_interview_assistant(job_role, company_name, detailed=detailed, limited_searches=limited_searches)
society.task_prompt = enhanced_prompt
# Use our wrapper function to strictly enforce a limit of 5 rounds
answer, chat_history, token_count = run_society_with_strict_limit(
society,
round_limit=5,
progress_callback=progress_callback
)
duration = time.time() - start_time
logging.info(f"Completed question generation for {job_role} at {company_name} in {duration:.2f} seconds")
# Find any files that were generated
generated_files = [str(file) for file in Path(INTERVIEW_PREP_DIR).glob("*") if file.is_file()]
return {
"answer": answer,
"chat_history": chat_history,
"token_count": token_count,
"generated_files": generated_files,
"duration_seconds": duration
}
except Exception as e:
logging.error(f"Error in question generation: {str(e)}", exc_info=True)
raise
def create_interview_prep_plan(
job_role: str,
company_name: str,
detailed: bool = True,
limited_searches: bool = True,
progress_callback: Optional[Callable] = None
) -> Dict[str, Any]:
start_time = time.time()
logging.info(f"Starting preparation plan creation for {job_role} at {company_name} (detailed={detailed})")
try:
base_prompt = get_preparation_plan_prompt(job_role, company_name)
enhanced_prompt = f"""{base_prompt}
Please provide a highly thorough, step-by-step preparation plan with multiple days of tasks,
detailed technical reviews, code examples where applicable, and at least 2000 words total.
No truncation or summaries—include the full content.
"""
society = construct_interview_assistant(job_role, company_name, detailed=detailed, limited_searches=limited_searches)
society.task_prompt = enhanced_prompt
# Use our wrapper function with strict limit of 5 rounds
answer, chat_history, token_count = run_society_with_strict_limit(
society,
round_limit=5,
progress_callback=progress_callback
)
duration = time.time() - start_time
logging.info(f"Completed preparation plan creation in {duration:.2f} seconds")
# Find any files that were generated
generated_files = [str(file) for file in Path(INTERVIEW_PREP_DIR).glob("*") if file.is_file()]
return {
"answer": answer,
"chat_history": chat_history,
"token_count": token_count,
"generated_files": generated_files,
"duration_seconds": duration
}
except Exception as e:
logging.error(f"Error in preparation plan creation: {str(e)}", exc_info=True)
raise
if __name__ == "__main__":
job_role = "Machine Learning Engineer"
company_name = "Google"
result = create_interview_prep_plan(job_role, company_name, detailed=True)
print(f"Answer: {result['answer']}")
print(f"Generated files: {result['generated_files']}")
print(f"Execution time: {result['duration_seconds']:.2f} seconds")
print(f"Conversation rounds: {len(result['chat_history'])}") |